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Abstract

Many papers use fixed effects (FE) to identify causal impacts of an intervention. In this
paper we show that when the treatment status only varies within some units, this design can
induce non-random selection of units into the identifying sample, which we term selection into
identification (SI). We begin by illustrating SI in the context of several family fixed effects
(FFE) models with a binary treatment variable. We document that the FFE identifying sample
differs from the overall sample along many dimensions, including having larger families, and
that, when treatment effects are heterogeneous, the FFE estimate is biased relative to the
average treatment effect (ATE). Returning to SI more broadly, we then develop a reweighting-
on-observables estimator to recover the unbiased ATE from the FE estimate for policy-relevant
populations. We apply these insights to examine the long-term effects of Head Start in the PSID
and the CNLSY. Using our reweighting methods, we estimate that Head Start leads to a 3.1
percentage point (p.p.) increase (s.e. = 6.1 p.p.) in the likelihood of attending some college for
white Head Start participants in the PSID. This ATE is 70% smaller than the traditional FFE
estimate (12 p.p). We find qualitatively similar attenuation of the CNLSY estimates.
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1 Introduction

Fixed Effects (FE) are frequently used to obtain identification of the causal impact of an at-

tribute, intervention, or policy – the “treatment” of interest. This class of models has been used to

identify the impact of academic peers (school-grade FE; Hoxby, 2000; Carrell and Hoekstra, 2010);

criminal peers (facility-offense FE; Bayer, Hjalmarsson and Pozen, 2009); the local health care envi-

ronment (individual FE; Finkelstein, Gentzkow and Williams, 2016); participation in means-tested

programs (family FE; Currie and Thomas, 1995; Garces, Thomas and Currie, 2002; Deming, 2009;

Rossin-Slater, 2013); and neighborhood quality (family FE; Chetty and Hendren, 2018), to give a

few examples. Many of the estimates in these studies are naturally read as the average effect for a

policy-relevant population (e.g. participants or those eligible for treatment). However, in contrast

with other common estimators, there is not yet a comprehensive framework for considering the

external validity of FE estimates.

In this paper, we show that FE can induce a special type of (non-random) selection in estimation,

which we term “selection into identification” (SI). Broadly speaking, SI results from the fact that

FE estimates are identified from FE units (e.g. families, in the case of family FE) that have variation

in treatment (“switchers”), which may exclude some units.1 In the contexts we examine, switchers

are (i) a subset of the sample and (ii) systematically different than the overall population. This is

a distinct problem from whether within-unit comparisons are internally valid, which has been the

typical subject of debate for FE estimators,2 and which is not the focus of this paper. It is also

different than the issue of conditional variance weighting of switcher treatment effects, which can

also create external validity concerns (Gibbons, Suarez and Urbancic, 2018). We show that in the

presence of heterogeneous treatment effects, SI causes FE to deviate from the sample ATE, and

that this issue is quantitatively more important than conditional variance weighting in the settings

we analyze. We develop reweighting-on-observables methods that address both of these issues and

recover the ATE for the sample and for other target populations. We use these methods to revisit

prior FE estimates of the long-run impact of Head Start.

We begin by presenting four facts that illustrate the empirical relevance of SI, in the context

of a family fixed effects (FFE) model with a binary treatment. In particular, we examine patterns

of within-family variation in participation Head Start, federally funded preschool, using the Panel

Study of Income Dynamics (PSID), as in Garces, Thomas and Currie (2002) (hereafter GTC).3

First, relative to an estimation model without fixed effects (which we label OLS), FFE uses sub-

stantially fewer identifying units, more so than is commonly disclosed in work on this topic. Among

1If there are no other control variables that vary within unit, then switchers provide all the identifying variation.
In the presence of other control variables which themselves vary within unit, then there may be variation among
non-switchers “net of controls”. We focus on cases where this phenomenon is small in magnitude.

2See Bound and Solon (1999).
3Similar FFE models have been used to evaluate many other treatments. In addition to the aforementioned

studies, for public housing, see Andersson et al. (2016); for WIC, see Chorniy, Currie and Sonchak (2018); Currie and
Rajani (2015); for health, see Almond, Chay and Lee (2005); Figlio et al. (2014); Abrevaya (2006); Black, Devereux
and Salvanes (2007); Xie, Chou and Liu (2016), among others.
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the 5,355 children in the sample with siblings, only 1,098 children reside in switcher households.

Second, the loss of sample variation is systematically related to observables. The likelihood of being

a switcher - and thus included in the FFE estimation - increases with the probability of treatment

(over the support 0 to 0.5) and with the number of observations per unit (children in a family).

Third, since these factors vary across subgroups, SI does as well. The FFE identifying sample

misses 93% of the sibling sample for white children, but only 62% of the sample for black children.

Fourth, as a result, switchers are not representative of the overall sample along many dimensions.

The most striking imbalance is along family size, but differences in income and parental education

are also apparent.

Next, we show that under heterogeneous treatment effects, SI can meaningfully change the esti-

mated treatment effect. The consequence of this is that the FFE estimate is no longer representative

of the sample Average Treatment Effect (ATE), let alone the treatment effect for a policy-relevant

population, such as program participants. This also implies that the difference between the OLS

estimate and FE estimate can no longer be interpreted as solely reflecting OLS bias. Because we

are more likely to have non-switching FE units when they are defined over a smaller groupings

of observations, the impact of SI may be stronger in this case. In some settings this means that

standard FE methods may lead to a tradeoff between external validity and bias.

To address the change in estimated treatment effect due to SI, we develop a novel approach to

reweight the FE estimates to obtain the ATE of policy-relevant “target” populations. Drawing on

propensity score methods, we estimate an index of the likelihood of being in the target population

(e.g. program participants) and in the switcher sample using a multinomial logit model. We

then use the ratio of these probabilities to upweight observations that are under-represented in

the identifying sample relative to the population of interest. This approach follows the spirit of

the literature that examines extrapolating experimental results to other populations (Stuart et al.,

2011; Andrews and Oster, 2018). We implement this using weighted least squares (“in-regression

weighting”) and post-regression weighting. This extrapolation relies on a conditional independence

assumption: conditional on covariates, the treatment effect is assumed to be independent of whether

an individual is in a switching unit or not, and whether they are in a target population or not.4

We demonstrate the effectiveness of our reweighting using Monte Carlo simulations in a setting

with naturally occurring SI. We show that when treatment effects are a function of observable

variables, these methods are effective at reducing or eliminating bias. As an auxiliary finding,

we show that for binary outcomes both a linear probability model with FE and conditional logit

model can be used to obtain unbiased ATE for switchers, as long as treatment effects are properly

extrapolated from the non-linear model.

Based on these findings we propose new standards for practice when presenting results using

FE research designs: (1) clearly show not only total sample size, but additionally sample size when

4In some settings, this assumption can be tested by comparing treatment effects across target and non-target
populations, within the switching sample.
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limited to switcher families (and also for relevant subsamples within the data); (2) show the balance

of covariates across switcher and non-switcher families (e.g. Table 2); (3) Reweight FFE estimates

for a representative population (e.g. Table 5). We are not the first to use the more rigorous

reporting standards in (1) and (2), but in our survey of the literature, the vast majority of papers

do not discuss either of these issues.5

In the second part of the paper, we apply these methods to quantify the importance of selection

into identification for FFE estimates of the long-run impact of Head Start. Head Start has a budget

of $8.6 billion dollars and annually enrolls roughly 60% of the number of 3 and 4 year old children

in poverty, which makes it a quantitatively important intervention for this population (Carneiro

and Ginja, 2014).6 FFE have been used to identify the long term impacts of Head Start in many

of the foundational studies of this program (Currie and Thomas (1995); Deming (2009); GTC),

which find positive impacts on economic and non-cognitive outcomes of participants measured in

adulthood. We provide new evidence of these effects, and also for the first time estimate the average

long term effects for the Head-Start-eligible and Head-Start-participant populations.

Using data from the PSID and the Children of the National Longitudinal Study of Youth

(CNLSY) (as in GTC and Deming (2009)), we newly document that, across multiple human capital

measures, there are patterns consistent with greater returns to Head Start in larger families. This

might result from the fact that parental time investment in children’s human capital is spread more

thinly in larger families, which in turn could lead to greater returns to alternative investments (such

as Head Start) in these families.7 Since these families are upweighted in FFE models, then, it is

intuitive that the FFE estimate is likely to be upward-biased.

Conforming with this intuition, our multivariate reweighting strategy gives smaller estimates of

the impact of Head Start relative to FFE. We illustrate this first using the largest sample of siblings

used to investigate this question, three times as large as the analysis in GTC. The FFE estimate in

the PSID suggests that Head Start leads to a statistically significant 12 p.p. increase in attendance

of some college. Using our reweighting methods, however, we find more modest and less-precisely-

estimated benefits of the program. We estimate that Head Start leads to a 3.1 percentage point

(p.p.) increase in the likelihood of attending some college for Head Start participants (s.e. = 6.1

p.p.), and a 7.1 p.p. (se=6.0 p.p.) increase for the Head Start eligible population. The ATE

for Head Start participants estimate is 74% smaller than the FFE estimate, a difference which

is significant at the 5 percent level. It is also noticeably smaller than prior estimated effects on

college-going for this population (GTC), and on the lower end of, but in line with, unadjusted

5Important exceptions include Finkelstein, Gentzkow and Williams (2016), who include a substantive discussion
and examination of external validity concerns, as well as Currie and Rossin-Slater (2013). GTC report the number
of identifying observations in aggregate (not for subsamples), and Deming (2009) reports the number of identifying
observations for all samples.

6See Gibbs, Ludwig and Miller (2013) for an overview of Head Start, including programmatic details.
7In Section 6 we examine whether this heterogeneity by family size is likely driven by other covariates, or by larger

families having longer sibling cohort spans. We do not find evidence that this is the case. Instead it appears that
there is something important about family size per se.
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estimates for all participants from other FFE studies (Bauer and Schanzenbach, 2016; Deming,

2009), and estimates from the county roll-out of Head Start (Bailey, Sun and Timpe, 2018).

We find that reweighting similarly attenuates the FFE estimate of the impact of Head Start

in the CNLSY (Deming, 2009). While FFE suggests that Head Start leads to an 8.5 p.p.increase

in high school completion, the reweighted estimate for Head Start participants is 40% smaller and

significant only at the 10 percent level. The FFE and reweighted estimates are statistically different

at the 10% level. Reweighting also attenuates the previously-estimated impact of Head Start on

idleness and having a learning disability, and, to a lesser degree, the impact on poor health, relative

to the FFE estimates.

The core contributions of this paper are to show the importance of heterogeneity in treatment

effects across switching and non-switching units; and to provide a reweighting estimator that allows

for the recovery of ATE for policy-relevant populations. This is different from strategies that employ

reweighting for internal validity, such as traditional propensity score estimation methods. The FE

estimation strategy that forms our focus is also distinct from traditional difference-in-difference

strategies, or related strategies that employ both unit and time fixed effects. In those strategies,

there are units that have nominally unchanging treatment. However, once unit and time fixed

effects are partialed out it turns out that all units contribute toward identifying variation.8

Methodologically, we build on the literature that documents the difference between “what you

want” and “what you get” from standard estimators. Included among these are studies on ex-

trapolation from experimental estimates to the population ATE (Stuart et al., 2011; Andrews and

Oster, 2018). We discuss this literature in detail in Section 2.1. Closest to this paper, Gibbons,

Suarez and Urbancic (2018) derive the ATE bias of the FE estimator when treatment effects and

the conditional variance of treatment vary across units. A non-innocuous assumption of that paper

is that the conditional variance of treatment is positive for all units. We illustrate the bias of the

estimator when this assumption is relaxed. Further, we show how the violation of this assumption

is tied to characteristics of households, and that it has a meaningful impact on estimates. We

also provide a flexible method for deriving treatment effects for populations of interest other than

the ATE, including the TOT. Different than earlier papers, we consider extrapolation when the

identifying sample is not necessarily a subset of the population of interest, and when identifying

variation comes from within-unit comparisons.

We present our results in the context of FFE and Head Start, but they apply to any panel fixed

effects model, with special relevance for those with short panels and lumpy (e.g. binary) treatment

variables. For example, consider the set of studies that examine the effect of peers in the classroom,

such as in Carrell and Hoekstra (2010) who examine the effect of having a peer exposed to domestic

violence (DV), using school-grade FEs. Since DV is relatively infrequent, over a short period, some

school-grades will never have such a student. Further, there may be some school-grades that always

8Our approach can be applied to event study specifications identified off of switching units, when the policy-relevant
population of interest also includes non-switching units.
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have one student with DV exposure. If DV is correlated with factors that could mediate the effects

of DV, such as school income, teacher experience, or the presence of counseling services services,

the FE coefficient will incorrectly weight these heterogeneous treatment effects.9

Finally, we contribute to a growing body of work investigating the long term effects of Head Start

using quasi-experimental methods (Ludwig and Miller, 2007; Carneiro and Ginja, 2014; Thompson,

2017; Bauer and Schanzenbach, 2016; Johnson and Jackson, 2017; Bailey, Sun and Timpe, 2018,

in addition to the FFE papers above). These studies typically present LATE or ITT estimates,

and find improvements in childhood health and increases in educational attainment among earlier

cohorts of participants, and reductions in behavioral problems, health problems, and obesity in

later childhood and early adolescents for later cohorts of participants. Relative to most of these

studies, we evaluate the effect of Head Start on longer-run outcomes through longitudinal tracking

of individuals and also adjust estimates using covariate re-weighting to get closer to the ATE for

Head Start participants. We show that incorporating this adjustment lowers the estimated the long

term effect of Head Start.

2 Literature

2.1 Reweighting for External Validity

This paper builds on prior works that decompose the implicit weighting schemes of standard

OLS and FE estimators. Angrist (1998) and Angrist and Pischke (2009, Section 3.3.1) show that

the OLS estimator with a binary independent variable can be represented as a weighted average of

covariate-specific treatment-control comparisons. The OLS weights do not necessarily recover the

ATE or TOT. Sloczynski (2017) shows that OLS can be represented as a weighted average of the

treatment effect estimate for treated individuals, and the treatment effect estimate for untreated

individuals, with the somewhat surprising result that the weights are in inverse proportion to each

group’s share of the sample.

In a fixed effects context, Gibbons, Suarez and Urbancic (2018) show that panel FE estimates

can be represented as a weighted average of the unit-specific estimated treatment effects, where

the weights are connected to the inverse of the conditional variance of treatment. Panel FE es-

timates therefore do not usually recover the ATE or TOT. They provide two solutions to obtain

the ATE: (1) weighted least squares, where the weights “undo” this variance reweighting; (2) a

post-regression averaging of the estimated unit-specific treatment effects. This approach has two

important limitations, however. First, it only recovers the ATE if all units have variation in the

treatment variable. Second, if the sample is not representative of the policy-relevant population

9One alternative setting where our results may be relevant is the recent set of studies that identify the effects of the
environmental shocks on health and human capital. Since these events can be infrequent, over a short period, some
geographic units will not have variation. Similar intuition can be applied to studies that identify geographic effects
from the behavior of movers. In this context, one potential correlate of SI is occupation, since some occupations are
less mobile than others (e.g. lawyers, due to licensing).
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(e.g. likely participants), the ATE for the sample may not be of great interest. In a related vein,

the difference-in-differences estimator provides uneven weighting of treatment effects when there is

variation in the timing of treatment, which can also cause the estimate to deviate from the ATE

of interest, and may require reweighting (see, e.g. Goodman-Bacon, 2018; Borusyak and Jaravel,

2017; Callaway and Sant’Anna, 2018).

Our paper is also connected to the literature on IV and local average treatment effects (Angrist,

Imbens and Rubin, 1996; Imbens and Angrist, 1994), which centers on the issue that shifting to

instrumental variables variation changes not only the type of variation but also over whom this

variation is being averaged. IV changes the relative weights among the observations, in proportion

to the variation they bring in the instrument. When treatment effects vary across individuals, OLS,

IV, and FE can each provide different estimates, even when each of the approaches is valid in terms

of exogenous variation (Lochner and Moretti, 2015; Loken, Mogstad and Wiswall, 2012). Lochner

and Moretti (2015) propose reweighting OLS estimates aiming to put OLS and IV on even footing.

Angrist and Fernandez-Val (2013) show that differing choices of instruments may cause estimates

to vary; they offer covariate-reweighted LATE estimates that aim to make these estimates more

comparable.

FE models with short panels or lumpy (e.g. binary) treatments, which are our focus, raise

many issues that are similar to those raised in Gibbons, Suarez and Urbancic (2018) and Angrist

and Fernandez-Val (2013). There are also some new issues that arise. Most importantly, for many

units, there is no within-unit variation in the covariate of interest. This is especially likely to

happen when the covariate of interest is binary. As such, researchers need to work with the limited

subset of units that experience within-unit variation in treatment. We propose simple diagnostic

checks for exploring this issue, and suggest weighting schemes to address the unique aspects of our

setting and which aim to recover the average treatment effects over populations of interest.

Our proposed solution for FE models is closely related to the literature focused on the exter-

nal validity of randomized experiments and on extrapolating from an experimental population to

other populations. Stuart et al. (2011) examine experiments in which treatment effects depend

on observable covariates and propose diagnostic measures for assessing the ability to extrapolate.

Andrews and Oster (2018) show that there are in principle infeasible weights that could be used

to extrapolate from experimental effects to the population ATE, and that these weights depend

in part on the unobservable determinants of the selection into identification process. They relate

the infeasible extrapolation bias to the observable “participation on observables” bias. Correcting

for the latter bias will allow for extrapolation to the extent that (1) selection into identification

is largely a function of observables, or (2) treatment effect heterogeneity is largely a function of

observables (or both). As we discuss in Section 4, selection into identification from FE may be

a setting where explanatory factors are more likely to be observable. This is because selection is

driven by within-unit variation in treatment.
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2.2 A Survey of FFE Applications

Since our application focuses on a FFE model, we focus on applications of this particular method

in the literature. This focus will lead us to undercount the prevalence of FE more broadly, but

provides an unambiguous example of a short-panel setting which is susceptible to SI concerns.

We surveyed publications from January 2000 to May 2017 in 11 leading journals that publish

applied microeconomics articles. We include all studies that use family fixed effects as a primary

or secondary strategy.10

Our literature review yields 58 papers. We provide descriptive statistics of these articles in

Table 1. The first panel tabulates the frequency of binary treatments and binary outcomes across

the sample of papers, the focus of our methodological insights. These forms of variables appear

frequently. Nearly two-thirds (37) of the papers have a binary treatment of interest and 25 have

a binary outcome. The second and third panels show the varied topics that appear in the sample,

spanning health, public, education, and labor fields.

The final panel of the table summarizes the distribution of sample sizes used with FFE. The

samples are frequently not limited to families with variation in the treatment variable; therefore,

the sample size in the table is an upper bound on the number of observations used for identification.

The median number of sibling observations is 6,792, or roughly 85% of the sample in our analysis.

It is important to note that there is a high variance in sample size across samples, indicating

that there is not a threshold for FFE analyses. The bottom 25% of papers have fewer than 1,200

observations, while the top 25% have over 175,000 sibling observations.

Appendix Figure A.1 illustrates the salience of this estimation strategy over time. It shows a

steady stream of FFE papers over the past 15 years; and that these papers have an impact on the

literature, with a mean 181 citations per article (Google Scholar citations as of May 2017).

3 Selection into Identification

We examine two methodological issues that arise from the FE research design: (i) reduction

in identifying variation; (ii) a change in the composition of the identifying sample. We illustrate

these issues in the context of a FFE example using micro data, which we draw from our analysis

of the impacts of Head Start in the second half of the paper. Therefore, in this section, we will use

the term “families” to refer to cross-section units, but the intuition can extend more broadly.

To solidify ideas, we provide an outline of the data we use in the example - for more detail,

see the descriptions of the PSID data in Sections 6.1 and 6.2. The sample consists of 2986 white

10We surveyed: AEJ: Applied Economics, AEJ: Economic Policy, AER, AER P&P, Journal of Health Economics,
Journal of Human Resources, Journal of Labor Economics, Journal of Political Economy, Journal of Public Economics,
QJE, Review of Economics and Statistics. To identify these articles, we used the search terms “family,” “within-
family,” “sibling,” “twin,” “mother,” “father,” “brother,” “sister,” “fixed effect,” “fixed-effect,” and “birthweight”
using queries on journal websites. We then searched within articles to see whether FFE was used in the analysis.
Finally, we added some additional papers to the list that we are aware of and did not satisfy these search terms. The
resulting list is fairly comprehensive, but still likely to be a slight undercount of FFE articles in these journals.
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children born in the years 1954-1987. The regression of interest estimates the effect of ever having

attended Head Start on a dummy for ever having attended college. We include many control

variables, including a dummy for other preschool attendance and parental and early-childhood

socioeconomic circumstances. The coefficient on Head Start in a cross-section regression is 0.049

(s.e. = 0.044). When mother fixed effects are added, the coefficient becomes 0.120 (s.e. = 0.053).

This result indicates that the impact of Head Start participation on college attendance is meaningful

in magnitude, and statistically significantly different from zero.

3.1 Empirical Relevance

In the FFE setting, treatment effects are identified from switcher families. This implies that

the ex-post effective number of observations — that is, those that contribute to identifying the

treatment effect — may be quite small and not representative of a population of interest.

We illustrate the identifying variation for the FFE regression of some college on Head Start

attendance in Panel (a) of Figure 1, which shows a scatterplot of the deviation in Head Start

attendance within a family f , HeadStarti-HeadStartf , against the within-family deviation in

attainment of some college for the white sample, AnyCollegei-AnyCollegef .11 The size of each

symbol is weighted by the number of individuals. Strikingly, the largest mass of observations is

at (0,0): the majority of families have no variation in Head Start participation and no variation

in the college attendance of their children. Moreover, there are many additional families with no

within-family deviation in Head Start but some variation in college attendance, as illustrated by

the vertical alignment of large bubbles. When we remove observations for families with no variation

in Head Start, who are centered on the y-axis, the number of observations drops substantially from

4761 to 213.

This reduction in identifying observations could result in a selected sample if switching is corre-

lated with family characteristics. To gain intuition about which variables might determine switching

– and hence, influence the reduction in observations – we build a simple model of the Head Start

(HS) participation decision within families. We assume that the probability of attending Head Start

is a constant, π, and independent across siblings in a family, such that the likelihood of attending

is a lottery within families. The probability of switching, is then a function of π and family size,

Zf :

P (HSSwitchingFamily) = 1− (1− π)Zf − πZf (1)

Appendix Figure A.2 graphs the relationship between P (HSSwitchingFamily) and π for fami-

lies with 1, 2, 3, 4, or 5 children according to this formula. It shows that the probability of switching

11A value of 0.5 along the horizontal axis, for example, means that a person went to Head Start in a family where
half the children attended Head Start. Values other than 0.5 and -0.5 are possible because not all families have just
two children. Values of -0.5 and 0.5 are also possible in families with more than 2 children, if equal numbers of
children participated as did not. A value of -0.75 means that a person did not go to Head Start in a family where
three quarters of the children did.
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has an inverse-U-shaped relationship with π, implying that the reduction in observations will be

larger for populations with very high and very low π, and smaller when π is close to 0.5. And for

a given level of π, the likelihood of being in a switching family is increasing with family size.

The markers in Figure 2 identify the observed probability of attending Head Start and of being

in a switching family for each family size-group by black/white race and by whether the mom has

some college or not in the PSID. As in the stylized model, the likelihood of switching is increasing

with family size for each of these subgroups.12 Appendix Table A.1 shows that this pattern is driven

by a much larger incidence of no Head Start participation among smaller families,13 which, in turn,

reduces the likelihood of switching. We also observe that switching increases with π, following

the inverse-U. The probability of Head Start attendance among black families and families with

low-educated moms is much higher and closer to 0.5, compared to white families and families with

high-educated moms; and the switching probability is correspondingly larger for black and low-

educated families. As a result, the sample used for FFE identification is comprised of 7% of the

sibling sample for whites, and 38% of the sibling sample for blacks. Note that while we are focusing

on race and maternal education, this notion can be generalized to any other family characteristic,

such as SES, that determine π.

This pattern is not unique to the PSID or to Head Start. Panels (b) and (c) of Figure 2 show this

relationship using data from two other FFE papers, Collins and Wanamaker (2014) and Deming

(2009). In both papers, the treatment variable of interest is binary; migration to the North and

Head Start participation, respectively. In each of these samples, the probability of being a switcher

is increasing in family size.

3.1.1 Selection into Identification Driven by Many Variables

Since SI is likely to affect the balance of characteristics other than family size (such as those

associated with the probability of Head Start), we now examine a large number of observable

characteristics of switcher families and non-switcher families. Panel A of Table 2 indicates that

in addition to having a larger family size, children in switcher families tend to have parents with

significantly less education than children in non-switcher families (column 3). These differences in

parental education are significant even in a regression framework where we control for differences

in family size and the other covariates in the table, though only at the 10 percent level (columns

4 and 5). We also see that the family income during preschool of children in switcher families is

significantly lower than non-switcher families overall (some of which may have too high of income

to ever qualify for Head Start).14 These patterns are consistent with switching increasing with the

12As expected, the observed relationship with family size is quantitatively smaller than predicted by the model,
because Head Start participation is correlated across children within a family.

13For example, 78% of 2-child families have no Head Start participants, compared with 48% of families with 5 or
more children.

14If we limit ourselves to families with Head Start participants, we still obtain qualitatively similar results, but the
differences are somewhat smaller and sometimes less precisely estimated.
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probability of Head Start participation, depicted in Figure 2.

In Panel B of Table 2, we summarize the differences between switchers and non-switchers by

examining how much overlap there is in the characteristics of switchers and non-switchers with (1)

the switcher population and (2) the Head Start participant population.15 We do so by estimating

the propensity for each individual to appear in (1) and (2) using a multinomial logit. We describe

this procedure in detail in Section 4.3 below.16 Among both switchers and non-switchers, the

predicted probability of being a switcher is larger than the predicted probability of being a Head

Start participant. More importantly, the ratio of these probabilities is larger for switchers than

for non-switchers. As a benchmark, Stuart et al. (2011) suggest that a 0.1 to 0.25 SD difference

in propensity scores between the experimental and non-experimental population may be too large

to rely on extrapolation without further adjustments. The mean of this ratio for switchers in our

sample is 0.3 SD higher than for non-switchers. This suggests that we may need to account for the

differences in the covariates across the two populations to get an acceptable extrapolation.

3.2 Consequences for Estimation

We now decompose the FE estimator to understand how selection into identification alters the

weighting of marginal effects and how this compares to the weighting of the OLS estimator. The

usual interpretation of the difference between OLS and FE estimators is that FE removes bias.

We show that the change in weighting also contributes to the wedge between the estimators and,

distinct from prior work, that the change in weights from SI is a particularly important concern

for interpretation of FE estimates.

Under homogeneous treatment effects, SI has no effect on expected bias in estimation; there is

loss of precision that accompanies the overall reduction in sample size. The more interesting case

is when treatment effects are heterogeneous.17 A useful starting point is to consider the case where

treatment effect heterogeneity depends only on one discrete covariate. For now, we concentrate

on heterogeneity along family size in a FFE model. That is, there is a different treatment effect

for each family size z, δz. In Section 4.3, we allow for multivariate heterogeneity with multiple

continuous covariates. Using the regression decomposition formula (Angrist, 1998; Angrist and

Pischke, 2009),18 the treatment effect estimated from the sample of siblings is:

δOLS =
∑
z

δz,OLS · ωz,OLS (2)

15Results are similar when we consider siblings as an alternative target population.
16Specifically, this table shows the mean and standard deviation of the (inverse of the) post-regression weights that

we construct for the Head Start participant target population.
17In the context of experimental designs, Andrews and Oster (2018) show that extrapolating from the estimation

sample to a target population has greater bias when: (1) the underlying characteristics of the estimation and target
population are different, (2) there is greater variability in the treatment effect, and (3) there is higher correlation
between selection into the estimation sample – “participation decisions,” in their phrasing – and treatment effects.

18See equation 3.3.7 on page 75 of Angrist and Pischke (2009).
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where

ωz,OLS =
(σ2

HS,sibling,Zf=z) · Pr(Zf = z|sibling)∑
z′(σ

2
HS,sibling,Zf=z′) · Pr(Zf = z′|sibling)

δz,OLS is the OLS estimate of the treatment effect for family size z, and σ2
HS,sibling,Zf=z is the

conditional variance of Head Start among the sibling sample for families of size z, net of other

control variables. The fixed effect estimator for the sibling sample can be written as:

δFE =
∑
z

δz,FE · ωz,FE (3)

where

ωz,FE =
(σ2

HS,within,Zf=z) · Pr(Zf = z|switcher)∑
z′(σ

2
HS,within,Zf=z′) · Pr(Zf = z′|switcher)

and δz,FE is the FE estimate of the treatment effect for family size z, σ2
HS,within,Zf=z is the

conditional variance of Head Start among the sibling sample for families of size z, net of family

fixed effects and other control variables.

Moving from OLS to FE, the δ’s change and also the ω’s change. The change in the δ is how

we usually interpret the move from OLS to FE. But the full change also incorporates the different

weightings of different family sizes. If the OLS sample and the FE sample overlap in the covariates,

we can decompose the difference between OLS and FE to identify how much is caused by the change

in weights, ωz, and how much is driven by the change in identification, δz, as:

δFE − δOLS =
∑
z

[ωz,FE − ωz,OLS ] · δz,FE︸ ︷︷ ︸
Impact of ∆ weighting

−ωz,OLS · (δz,OLS − δz,FE)︸ ︷︷ ︸
OLS Bias

(4)

The impact of SI is captured in the first element of Equation 4, which gives the disparity be-

tween the FE estimator for the sibling population and the switching population. This incorporates

differences in the probability of each family size appearing in FE and OLS as well as the differences

in the conditional variance.19 Since switchers are typically not a population of interest, this raises

concerns for the external validity of the FE estimator.

3.2.1 Illustration of Consequences: Greater Returns to Head Start in Larger Families

We use data from our empirical example to illustrate the change in the components of ωz

across OLS and FE. We consider situations where OLS is estimated on all individuals or only

siblings. In the interest of brevity, we include the details in Appendix Table A.2, and summarize

our main findings here. Consistent with the results above, the proportion of 5+-child families in

19Our decomposition is a special case of Equation 13 in Loken, Mogstad and Wiswall (2012), which provides a
general formula for the comparison of OLS and FE estimators.
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the switching sample is roughly twice the proportion in the overall sample, while the share of 3 and

4-child families is roughly constant. This will tend to upweight the coefficients of 5+-child families

in the regression.

For every family size the variance in Head Start is higher, roughly double, in the switching

sample relative to the sibling sample. The average effect is unlikely to be affected by this, though,

since the increase is relatively similar across family sizes . Thus, in our setting, the change in the

conditional variance across OLS and FE plays a minor role, while the change in the distribution of

family sizes is substantial.

We then calculate ωz,OLS and ωz,FE , which combine these two inputs. Going from the sibling

sample to the switchers sample, ω2−child declines by over 25% and ω3−child declines by 15%. On

the other hand, the ω5−child nearly doubles from 0.134 to 0.243, and the ω4−child families increases

by over 25%.

We also see that δz varies in our applications. The first two columns of Panel A of Table 3 shows

the estimated effects of Head Start on the likelihood of completing some college by the number of

children in a family for our illustrative sample of PSID white adults. We show the results with and

without family fixed effects. In both specifications, the effect of Head Start is significantly higher

among white children in families with 5 or more children and, once fixed effects are added, the

effect of Head Start is monotonically increasing with the number of children in a family.

One possible explanation for this heterogeneity is that children with higher initial endowments

receive greater parental investments in larger families, and also benefit more from Head Start (Aizer

and Cunha, 2012). Another possibility is that Head Start substitutes for parental time, which is

more scarce in larger families. Another interpretation is that this heterogeneity reflects the fact that

other covariates correlated with family size, such as income, mediate the impacts of Head Start.

This final explanation seems less likely, as we find that the heterogeneity in family size survives the

inclusion of other interactions, as we discuss in Section 6.

Like with SI, the larger Head Start effects we document for big families is not unique to the

PSID. Columns (3) to (5) of Table 3 show the CNLSY FFE estimated effects of Head Start by

family size for idleness, having a learning disability, and being in poor health.20 For each of these

outcomes, the impact of Head Start for 5+ child families is at least twice as large as the impact

for 2 or 3 child families. For high school graduation, we also see a large impact for 4-child families,

roughly double the impact for 2 and 3 child families. This implies that we should expect an

increase in the coefficient going from OLS to fixed effects due to the change in weighting across the

identifying samples, even without a change in the source of identification.

20We focus on these outcomes because individuals that attended Head Start were found to fair significantly better
on each of these outcomes in Deming (2009).
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3.3 Nonlinear Functional Form

Throughout, we use the linear probability model (LPM) as the primary specification for binary

outcomes, as is almost universally done in our review of FFE papers. In Appendix Section C, we

examine whether SI concerns are sensitive to functional form modeling assumptions. One reason

this may make a difference is that conditional or fixed effect logit and probit models use less

variation relative to LPM. With these models, for any families that have no variation in outcomes,

i.e “all successes” or “all failures”, the fixed effect parameters will be driven to +/- infinity, and

these families will be dropped from estimation. This leaves only “double switchers”: families with

variation in both the outcome variable and the treatment variable. Monte Carlo exercises reveal

that, in general, the bias of LPM and conditional logit is similar, and that the reweighting we

propose is equivalently effective at reducing bias for LPM and conditional logit.

4 Solutions

We propose two methods to flexibly obtain the ATE for populations of interest, which we refer

to as “target” populations. Commonly, the target population in applied work is the ATE for a

nationally representative sample, but for some treatments, like means-tested programs, one might

be interested in the ATE for eligible individuals or for participants.

4.1 Assumptions

The methods rely on several key assumptions. First, we assume that the FE estimator is

unbiased at the unit level. That is, we rely on the traditional FE assumption that conditional on

the fixed effects and control variables, treatment is as good as randomly assigned with regard to

potential outcomes.

Our second main assumption is a variant of the traditional conditional independence assumption

(CIA). We assume that conditional on observables, the true treatment effect is independent of a

unit’s switching or target status:

E [δf ⊥ (switcher, target) |Xf ]

This assumption is related to the ones employed in the literature on extrapolation from exper-

iments. In that literature the CIA requires that the participation decision be independent from

the treatment effect, conditional on observables. This type of assumption is also employed with

other reweighting methods (e.g. Angrist and Fernandez-Val, 2010). The CIA relies on selection into

identification being driven by observable covariates (and random chance).

In the Head Start context, the key determinants of variation in participation across children,

captured in Figure 2, are family size and the underlying probability of Head Start participation.

This could reflect the fact that over time, across children, parents are more likely to be exposed to
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the program, or are more likely to experience a change in family income, which alters eligibility for

the program. Family size is observable, and observable covariates, such as income, can take us a long

way in predicting program participation. We argue that similar forces may predict selection into

identification in other settings as well, particularly when there are clear, observable requirements

for participation in treatment (e.g means-tested programs).

Because we employ a CIA, we also require common support in X’s, or at least in a propensity

score. This can rule out use of certain covariates in the conditioning set. For example, we can never

have singletons in the switching sample, so we need to rule this out as a conditioning covariate.

Finally, we note that our CIA has one potentially testable implication: among the switchers, the

average treatment effect is the same (conditional on covariates) for those in the target population as

those not in the target population: E [δf |Xf , (switcher, target)] = E [δf |Xf , (switcher, non− target)].
Whether this can be tested in practice will depend on whether the definition of the target popula-

tion allows for a partion among the switchers into two groups. For example, if the target population

is “siblings” or “everyone”, then there will be no non-target individuals among the switchers.

4.2 Univariate Heterogeneity

If the source of heterogeneity in estimates is a single, discrete covariate, such as family size, a

simple solution is to reweight the family-size specific estimates to obtain the ATE for a represen-

tative target population. If the target population are siblings, this is given by

δtg=sibs
ATE =

∑
z

sz · δz (5)

where sz is the share of the target population – in this case, siblings, with characteristic z –

and δz is the treatment effect for families with characteristic z. This approach is similar to the

“Late-Reweight” concept in Angrist and Fernandez-Val (2013).21

In a similar vein, this expression can be adapted to instead use OLS weights, ωz,OLS , which

allows us to measure the change from OLS to FE attributable only to the change in identification:

δFE,ωOLS
=
∑
z

ωz,OLS · δz,FE (6)

Reweighting the family-size-specific estimates in this manner has a meaningful impact on the

coefficients we estimate our data example. We use the coefficients from column (2) of Table 3 and

the sibling weights we developed earlier22. This produces a coefficient of 0.083, which is included

in the second column of Panel B of Table 3. This implies that (under the assumption of univariate

heterogeneity) the FFE estimate is 50% higher than it would be if we were able to estimate FFE

with the OLS sibling population weights. This reinforces our intuition that changes in weighting

21See Equation 9 of Angrist and Fernandez-Val (2013).
22 See Panel C of Appendix Table A.2.
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can have substantial influence on the estimated coefficient.

As an intermediate step, we also quantify how much of the difference between OLS and FE is

attributable to (1) changing the weighting across different effect sizes, holding constant the cross-

sectional identification and (2) moving from “bad variation” (between families) to “good variation”

(within families), holding constant the FE weights. Taking the OLS family-size-specific coefficients

from column (1) of Table 3 and reweighting by the fixed-effects regression weights, ωz,FE , we obtain

a weighted coefficient of 0.069, shown in the bottom row of Table 3. This represents the effect of

Head Start on the switcher population using cross-sectional variation.23 Recall that the OLS

coefficient on Head Start is 0.049 (se=0.044), and the fixed effects coefficient is 0.120 (se=0.053).

So approximately 1/3 of the change from OLS to FE (0.069−0.049
0.12−0.049 ) is driven by the change in family

size weights; with the other 2/3 driven by change in identifying variation.

4.3 Extrapolating from Identifying to Target Populations: Treatment Effect

Heterogeneity based on Several Covariates

For the case where treatment heterogeneity maps onto multiple covariates we develop a more

general reweighting technique for extrapolating to a target population. Differently from the uni-

variate case, we now allow treatment effects to vary for each family, rather than varying only by

family size.

In this setting, the average treatment effect for a target population is given by

δtg=target
ATE =

∑
f∈switcher

sf,target · δf .

where sf,target is share of the target population represented by family f in the switcher sample.

Under the maintained assumption that family-specific treatment effects are unbiased and treatment

effect heterogeneity is a function of observable variables Xf , we can use family-specific treatment

effects, δf , from the switcher sample to construct δtg=target
ATE . δf can be obtained from a regression of

the outcome, yif , on the interaction between Head Start attendance and family-specific dummies.

We construct weights to make the families in the switcher sample representative of the target

population. These weights are ssw→tg
f =

Pr(i∈TargetPopulation|Xf)
Pr(i∈SwitcherSample|Xf)

× Pr(f |SwitcherSample).24. In-

tuitively, this will upweight families with characteristics that are underrepresented among switching

families. We provide a simple derivation to support this intuition in Appendix A.1. In the case

where all switchers are a subset of the target population, the weights are 1
Pr(i∈SwitcherSample|Xf)

×
Pr(f |SwitcherSample) This can be estimated by a simple logit or probit model.

It is not always the case that switchers are a subset of the target population; an observation

might be in one or both (or neither) of the target population and the switching sample. This results

23We verify that these weights work as intended, weighting the fixed effect coefficients by the weights for the
switcher sample, obtaining 0.123 (very close to the FE estimate of 0.12).

24This can also be multiplied by survey weights, which we do in our PSID example.
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in four possible categories that describe the switcher and target status of a particular observation.

To allow for this range of possibilites, we use a multinomial logit model to estimate the probability

of each outcome, where the outcomes are indicators for the four possible combinations of being in

the switcher sample (or not) and being in the target sample (or not). The numerator for the weight,

Pr (i ∈ TargetPopulation | Xf ), is then constructed as the sum of the probability of being in the

target population and not being a switcher and the probability of being in the target population

and being a switcher. The denominator is the probability of being in the switcher sample, and is

constructed as the sum of the probability of being in the target population and being a switcher

and the probability of being in the non-target population and being a switcher.

A feature of this approach is that we are able to extrapolate estimates to populations that

include families that have no switchers, such as singletons (one child families). The extrapolation

is based on the assumption that, conditional on the covariates, the treatment effect is the same

for switchers, non-switching multi-child families, and singletons. To implement the extrapolation

we cannot use family-size dummies or other covariates that could perfectly predict not being in

the switcher sample. Doing so would result in a violation of the common support assumption. We

instead control for family size with a polynomial.

We can construct our ATE estimate for the target population in one of two ways. The first is

a two-step “post-regression weighting” of δf :

̂
δtg=target
ATE,2step =

∑
f∈switcher

˜
ssw→tg
f · δ̂f (7)

with
˜

ssw→tg
f the normalized weights,

˜
ssw→tg
f =

ssw→tg
f∑

f ′∈switcher s
sw→tg

f ′
.

Under standard cluster-robust assumptions, the δ̂f are independently distributed from one

another, so we can obtain a cluster-robust variance estimate as25

V̂ (
̂

δtg=target
ATE,2step) =

∑
f

(
˜

ssw→tg
f )2 ·

(
δ̂f − ̂

δtg=target
ATE,2step

)2

(8)

A second approach is to obtain the ATE in a single step using “in-regression weights.” For

this, we need to adjust for the fact that the FE estimator uses weights ωFE rather than pop-

ulation shares. We address this by incorporating inverse conditional variance weights, as vf =(
V
(

¨HeadStart | familyID = f ;Xf

))−1/2
, where ¨HeadStart is the residualized measure of Head

Start after partialing out the family fixed effects and other covariates (Gibbons, Suarez and Ur-

bancic, 2018). Then, the ATE can be estimated by
̂

δtg=target
ATE,1step from a one-step regression using˜

ssw→tg
f · vf as regression weights. This more parsimonious approach may be more convenient for

25As Gibbons, Suarez and Urbancic (2018) note, we cannot estimate cluster-robust standard errors in the estimation
step: there are fewer clusters than the sum of the count of fixed effects and covariates. However the standard cluster-
robust assumptions imply that the δf are independent of one another. This enables the formula (8), which is an
additional contribution of this paper.
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estimation. It also makes computation of cluster-robust standard errors straightforward.

4.4 Monte Carlo for LPM FE

We perform a Monte Carlo analysis to examine the properties of the LPM estimator and of our

proposed reweighting estimators.

4.4.1 DGP

We build our Monte Carlo around a data set that is designed to reflect the variability in our

PSID Head Start application data set. In other words, we do not model SI, but rather use naturally

occuring SI in the data. This allows us to report on the effectiveness of our reweighting procedure

in a realistic context.

We begin by taking our original data, and running a linear probability model predicting “some

college or more” educational attainment, with a set of family-level and individual-level covariates,

including demographic variables, income during childhood, and parental education. From this

model we construct a one-dimensional covariate Xf which is the predicted Pr [Collegei = 1]. All

simulations start with this constructed variable Xf and the variable HeadStartif from the original

data. These variables are held fixed across simulations. We restrict the sample to those witĥPr[Collegei = 1] = Xf ∈ [0, 1]. For each DGP, once treatment effects have been assigned, we scale

these baseline probabilities to ensure that no one’s treated or untreated probabilities lie outside the

range of [0, 1]. In all cases in this section, the baseline (untreated) Pr [Collegei = 1] is linear in the

observed Xf .

We examine three specifications. Each specification varies the DGP that determines the realized

outcomes for each individual and, correspondingly, which control variables are used to generate the

propensity scores for reweighting. For the first DGP, all observations have a constant treatment

effect of 8 p.p. We use the variable Xf to generate propensity scores. For the second DGP, large

families (with 4 or more siblings) have a constant treatment effect of 19.2 p.p., and small families

(3 or fewer children) have zero treatment effect. We use a dummy variable for “large family” to

generate propensity scores. For our third DGP, we allow the treatment effect heterogeneity to vary

smoothly: the treatment effect in probability units is given by: 0.08 ·
(

1− Xf−X̄f

s.d.(Xf)

)
· 1

3 , with X̄f

and s.d. (Xf ) the mean and standard deviation of Xf . This produces a treatment effect which is

larger for lower-baseline-probability individuals, which varies smoothly across families, and which

ranges from 0.01 to 0.15 for most of the population. We use Xf to generate propensity scores. We

also consider an alternative model for this DGP in which the reweighting step uses a spline in Xf ,

with knots at the 5th, 20th, 50th, 80th, and 95th percentiles of Xf .
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4.4.2 Monte Carlo Results

We run 10,000 replications of our Monte Carlo simulation. In each replication, we keep track of

(1) the true ATE for each target population of interest; (2) the FE estimate of the treatment effect,

and (3) the reweighted regression estimate of the treatment effect for each target population.26 The

FE estimate is the same for all target populations. We consider four target populations. These

include (1) individuals in Head Start switching families27; (2) all siblings (regardless of whether or

not there is variation in Head Start in the family); (3) all individuals in the sample; and (4) all

Head Start participants. We multiply all estimates by 1,000 for easier readability.

Panel A of Table 4 considers the first DGP, with constant treatment effects. For this setting,

the average treatment effect is the same for all target populations, all estimators are unbiased, and

the FE model is the minimum variance estimator. The reweighting estimators have mean squared

errors 4 to 17% larger than for OLS.

Panel B of Table 4 considers the second DGP, with zero treatment effect for small families,

and large treatment effects for large (4+ children) families.It shows that FE is biased for the ATE

for each of the target populations considered. The reweighting estimator is unbiased for each

population considered. This improvement in bias over FE leads to much better mean squared error

results for the reweighting estimator.28

Panel C of Table 4 examines the third DGP, with heterogeneous treatment effect that varies

with Xf . For this DGP, the FE model does well for predicting the ATE for the switching sample,

with only a small bias of -0.11 p.p. Its bias is also relatively small for the Head Start participant

population. However, for all children, and for all siblings, the OLS model has a larger bias, on

the order of 1.3 p.p. The regression reweighting estimator, which uses Xf in the propensity score

estimation, has smaller bias for all target populations, with no detectable bias for the switcher,

or Head Start populations. The small bias for the reweighting estimator for the other target

populations results from an imperfect balance in the Xf variable, even after reweighting. When we

reestimate the model including a spline in Xf in the propensity score estimation step this results

in no detectable bias for any of the target groups.

4.4.3 Discussion

The results of this exercise show that that regression reweighting can greatly reduce bias (com-

pared to FE) for the types of treatment effect heterogeneity we consider. Moreover, the reweighting

estimator can be successfully targeted toward different target populations. Consistent with the con-

26Both post-regression and in-regression reweighting produce the same results.
27This will not necessarily be the same as the FE estimate because of differences in the conditional variance across

families.
28In results not reported, we have examined adding Xf as a covariate to the propensity score estimation stage.

Inclusion of this covariates introduces a small amount of bias in the reweighting estimator for the “siblings” and “all”
target groups. This underscores the fact that misspecification of the propensity score model can lead to an imperfect
rebalancing. Even in that setting, however, the bias induced from this misspecification (-0.1 to -0.14 percentage
points) is much smaller than that from the FE model (2.2 to 3.2 p.p.).
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ditioning on observables requirements of this estimator, its performance is best when it is given the

appropriate covariates for the particular type of heterogeneity at work.

In Appendix Section C, we extend our Monte Carlo analysis to a nonlinear (logit) DGP, and

additionally consider various logit FE estimators, including reweighted versions of these estimators.

We find results similar to those reported here for linear estimators. Reweighted versions of (1) linear

probability model, (2) logit with Mundlak controls, and (3) a 2-step logit model that we propose

all perform equivalently well in our simulations.

5 Summary of Recommendations

Based on our findings, we propose new standards for practice when presenting results using FE

or similar research designs. First, analyses should report the switching sample size in addition to

the total sample size, including for relevant subsamples of the data (e.g. whites and blacks). We

found this reporting already in use in our survey of the literature, but very infrequently. Second,

we suggest that researchers show a balance of observables across switching status to complement

evidence of within-sample balance across treatment status. Third, if switchers are not representative

based on these balance tests, we recommend using propensity-score reweighting of the FE estimates

to obtain estimates for a representative population or a policy-relevant population, such as program

participants. We find that reweighting is helpful for recovering ATE’s even when the outcome is

binary and the underlying model is nonlinear. Nonetheless, since these methods can perform

unevenly under some DGP’s, we suggest testing for sensitivity of results and reporting a range of

estimates where applicable.

6 Effects of Head Start

6.1 Data and Replication of GTC and Deming (2009)

We now turn to examining the impact of Head Start on long run outcomes using the PSID and

CNLSY, which were used to analyze this question in GTC and Deming (2009).

6.1.1 PSID

The PSID sample includes the sample of individuals surveyed in the PSID by 2011. The PSID

began in 1968 as a survey of roughly 5,000 households and has followed the members of these

founding households and their children longitudinally. The longitudinal nature of the study allows

sibling comparisons during early adulthood as well as later in life.

We begin our analysis with a replication of GTC. The sample includes all black or white

individuals born between 1966 and 1977, and excludes Hispanic individuals.29 We provide a detailed

29This sample is intended to be representative of the Head Start population during the early years of the program.
As pointed out in GTC, the number of immigrants was much smaller between the years 1960-1980, such that it is
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description of our replication of GTC in Appendix B. Despite some minor differences, the two PSID

samples are qualitatively similar. The summary statistics are often within a third of a standard

deviation of each other. Moreover, the estimated effects of Head Start in this sample are similar

to those estimated in GTC. We find large (23 p.p.) and significant effects of Head Start on the

probability that whites attain some college, and large point estimates (9.3 p.p.) for high school

graduation, though in our case these are not statistically significant. However, we do not find a

meaningful reduction in the probability of committing a crime resulting from participation in Head

Start.30

For the remaining analyses from here, we use a sample that substantially expands and modifies

the GTC sample. First, we expand the sample to include individuals born between 1978 and

1987. The individuals in these cohorts were too young when the analysis in GTC was performed

to observe their education and early career outcomes. Second, we include older siblings of all

individuals, including those born prior to 1966. These early cohorts were typically too old to

benefit from the introduction of Head Start, and serve as a plausible control group for the early

cohorts.

In addition to modifications of the sample, we also expand the number of outcomes under

analysis in order to gain a more extensive understanding of the channels by which Head Start affects

children’s lives. We follow the established practice of distilling the measures to summary indices

to lessen problems with multiple hypothesis testing (see, e.g., Anderson, 2008; Kling, Liebman and

Katz, 2007; Hoynes, Schanzenbach and Almond, 2016). We create four indices to capture economic

and health outcomes observed for individuals at age 30 and 40. The “economic sufficiency index”

includes measures of educational attainment, receipt of AFDC/TANF, food stamps, mean earnings,

mean family income relative to the poverty threshold, the fraction of years with positive earnings,

the fraction of years that the individual did not report an unemployment spell, and homeownership.

The “good health index” summarizes the following component measures: non-smoking, report of

good health, and negative of mean BMI.31

The process of creating each index follows the procedure described in Kling, Liebman and

Katz (2007). In particular, we standardize each component of the index by subtracting the mean

outcome for non-treated children, defined as children that did not attend any form of preschool,

and then dividing the result by the standard deviation of the outcome for non-treated children. The

summary index takes a mean of these standardized measures.32 We also extract the first principal

unlikely that many Hispanic immigrants would have benefited from Head Start.
30Moreover, in some subsamples, we find an effect in the opposite direction. We believe these cases are driven by

situations where there are rather few observations identifying the coefficients, and that the lack of correspondence
may be driven by very minor (and un-diagnosable) differences in specification and/or dataset construction.

31 See Appendix Table A.5 for descriptive statistics of the inputs to the indices.
32Consistent with Kling, Liebman and Katz (2007), we generate a summary index for any individual for whom we

observe a response for one component of the index. Missing components of the index are imputed as the mean of the
outcome conditional on treatment status. For example, if a former Head Start participant is missing an outcome,
it is imputed as the mean outcome of other Head Start participants. Likewise for other preschool, or non-preschool
participants.
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component of the standardized variables for “economic sufficiency” and for “good health”. Later

we use these as alternative outcome variables.

Appendix Table A.3 reports sample descriptive statistics for the expanded sample we construct.

For ease of comparison with our earlier replication, we include means for the entire sample, the

subsamples of Head Start participants/non-participants, and for the sample of individuals with

siblings. We present the means of the analyzed outcomes in Appendix Table A.4.33

6.1.2 CNLSY

The CNLSY sample is identical to that used in Deming (2009).34 The CNLSY is a longitudinal

survey that follows the children born to the roughly 6,000 women that took part in the NLSY79

survey. The sample we use includes all children who were at least 4 years old by 1990.

6.2 Head Start Estimation

The empirical strategy takes advantage of within-family variation in participation in Head Start

to identify the long term impact of the program. Following GTC and Deming (2009), we estimate:

Yim = α+ β1HeadStartim + β2OtherPreSchoolim +Ximγ + δm + εim (9)

where Yim represents a long-term outcome for individual i with mother m. HeadStartim in-

dicates whether a child reports participation in the program, and OtherPreSchoolim indicates

participation in other preschool (and no participation in Head Start). These two variables are in

this way defined so as to be mutually exclusive, with “neither Head Start nor other preschool” as

the omitted category.35 δm is a mother fixed effect which enables comparisons across siblings with

a shared mother. When we perform post-regression reweighting, we include interactions between

δm and HeadStartim to obtain family-specific estimates. The vector Xim includes a large number

of controls for individual and family characteristics to absorb differences in personal and household

characteristics which may be correlated with one’s participation in Head Start and long term out-

comes. These controls vary due to data availability across sources and specification used in earlier

work, but fall into three broad categories: demographics, family background, and family economic

circumstances during early childhood.36

33Appendix Table A.5 includes summary statistics for the inputs to the summary indices. In each of the tables of
summary statistics, the number of observations varies for each of the reported means. For example, the variable “ever
booked or charged with a crime” was only collected in the 1995 wave, and so is only relevant for cohorts old enough
to be at risk for that outcome by 1995. For parsimony, in Appendix Tables A.3 and A.4 we only report the number
of individuals in the sample for whom we have information on their attendance of Head Start. A full accounting of
the number of observations for each characteristic or outcome is available in Appendix Tables A.6, A.7, and A.8.

34This sample is downloaded from the replication files from the AEJ website.
35Since Head Start only became available in 1965, we recode Head Start attendance to be “other preschool” for

the 1961 and older cohorts.
36For the PSID, these include: individual’s year of birth, sex, race, and an indicator for being low birth weight,

mother and father’s years of education, an indicator for having a single mother at age 4, 4-knot splines in annual
family income for each age 0, 1, and 2, a fourth spline based on average family income between ages 3 and 6, indicators
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Missing control variables are imputed at the mean, and we include an indicator variable for

these imputed observations. We cluster standard errors on mother id.37 When Yim is a binary

variable, we estimate linear probability models as a main specification and check the sensitivity of

our results to alternative models.

The coefficient of interest is β1, the impact of Head Start on long term outcomes compared to

no preschool. We generate propensity score weights to obtain the ATE for three target populations:

(1) Head-Start-eligible individuals, based on family income between ages 2 and 5;38 (2) all Head

Start participants; and (3) all siblings.39 For parsimony, we use a subset of the variables in Table

2 to generate the propensity score.40 We include results for the post-regression weighting method;

results are qualitatively similar when we use in-regression weighting.41

6.2.1 Evidence on Model Assumptions: Identifying and Conditional Independence

The coefficients from Equation 9 take on a causal interpretation under the assumption that

within-families, and conditional on other covariates, the child care decision across siblings is as good

as random, and that the treatment effect does not spill over to siblings. The standard test of the

identifying assumption is to look for balance in observables across siblings within families. Deming

(2009) finds little evidence that Head Start attendance is correlated with observable differences

across siblings, which suggests that the magnitude of selection may be small.

In Appendix Table A.9, we examine the plausibility of the identifying assumption in the PSID by

testing the correlation between participation in Head Start and observable pre-Head Start individual

and family characteristics. For the white sample, there are few statistically significant correlations,

which suggest that the assumption may be reasonable. For the black sample, participation in

Head Start is correlated with a greater likelihood of having higher income at age 1, and lower

income at age 2. These correlations may raise concerns that black families may tend to send their

children to Head Start after a rupture in the family or after an income shock, which may bias

for mother’s employment status at ages 0, 1, and 2, and household size at age 4. This is a more expansive set of
covariates relative to GTC, which did not include controls for maternal employment or family income prior to age 3.
For the CNLSY, these include: health conditions before age 5, PPVT test score at age 3, measures of birth weight,
measures of mother’s health and health behaviors, mother’s working behavior and income prior to age 4, indicator
for being first born, participation in Medicaid, relative care, and indicators for early care types.

37We follow our predecessors’ weighting practices: for the PSID, we generate representative population weights
from the 1995 March CPS, and for the CNLSY do not use weights.

38An individual is considered Head-Start-eligible if at any point between the ages of 2 and 5 her family income
was below 150% of the poverty level. This is a more liberal definition that the official Head Start income threshold
(100%), to account for our imperfect ability to observe reportable income.

39 Propensity score weights are estimated using information on year of birth, maternal education, sex, and maternal
income at ages 3 and 4.

40Specifically, we use the following individual covariates to generate the propensity score: year of birth, gender,
mother’s years of education, income at age 3, and income at age 4, and a linear and quadratic in number of sib-
lings. Propensity score estimation is performed separately for the white and black samples. For the post-regression
weighting, we then average the ratio of predicted probabilities within families to get family-level weights.

41The results between these two methods diverge slightly when individual weights and individual covariates are
used. We determined from simulations that in this environment for our data, post-regression weighting typically
produces a reweighted estimate closer to the truth, so favor these.
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the estimated effects downward. However, given the many hypotheses being tested in this table,

it is also possible that these significant findings might be spurious. Moreover, these results are

somewhat sensitive, becoming insignificant when we drop observations with imputed controls. We

are therefore uncertain how worrying these estimates are.

For the reweighting, we require that CIA holds, which in our context implies that treatment

effects should be independent of whether one is in the target population. Appendix Table A.10

examines whether treatment effects vary across individuals in the target population. To implement

this test, we first estimate family-specific treatment effects for Head Start. In a second step, con-

tinuing to use the switching sample, we regress these estimated treatment effects on an indicator

for whether an individual is a member of the target population. These second step regressions

are re-weighted for balance on observables.42 For most outcomes, this test passes, with no sign of

systematic differences across target and non-target individuals. However in the CNLSY for the out-

comes Learning Disability and Poor Health, and the target population of Head Start participants,

there is some evidence (p < 0.10) of differential treatment effects for HS participants compared to

non-participants. Consequently, we advise that the results for these outcomes and target population

be viewed with some caution.43

Our reweighting procedure also relies on adequite overlap of the propensity score across switchers

and individuals in the target population in the non-switching sample. In Appendix Figure A.3 we

show the density of the estimated probabilities of being a Head Start participant for the switching

sample and the non-switching Head Start participant sample. This figure shows that there is a good

deal of overlap across the two groups, but also that there are a few Head Start participants whose

p-scores lie outside the range of the switchers. These observations represent 5 individuals, 6% of

the Head Start non-switcher observations, and 3% of all Head Start participants. We interpret this

magnitude of violation of the overlap assumption as mild enough to disregard in our subsequent

analysis.44

6.3 Head Start Results

6.3.1 Reweighted Estimates

We begin by presenting results for our illustrative outcome, attainment of some college for whites

in the PSID, in Panel A of Table 5. Column (1) of the table presents the estimated impact of Head

Start on some college in GTC, column (2) presents the results using our expanded sample, and

42For target individuals the weights are 1/Pr [targeti, switcheri], and for non-target individuals the weights are
1/Pr[nontargeti, switcheri]

43This test can only be performed among switchers, which requires at least one participant and one non-participant
per family. When the target population is Head Start particpants, this requirement forces a degree of blance across
the target and non-target groups. Another way of viewing this test is: do switching families with a greater share of
participants have different coefficients on Head Start than those with a smaller share of participants? We have run
analogous models at the family level, which give qualitatively similar results.

44We provide the equivalent figure for the “Head-Start-eligible” target population in Appendix Figure A.4. For this
target group, the range of switching sample estimated p-scores encompasses that for non-switching target observations.
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columns (3) to (5) present reweighted estimates for the three target populations. As reported earlier,

we estimate that Head Start increases the likelihood of attaining some college by a statistically

significant 12 p.p. (se: 0.053) using the baseline FFE model. This estimate is 57% smaller than the

estimate reported in GTC, 0.281 (se: 0.108).45 The standard errors are also roughly 50% smaller,

corresponding to the roughly tripling of sample size (2,986 compared with 1,036).

As we foreshadowed earlier, these estimates are unlikely to represent the ATE for policy relevant

populations, such as the Head Start eligible population and Head Start participants. Figure 3 shows

a scatter of the FFE weights and the Head-Start-representative weights for each family in the white

sample, divided by 2 to 3 child families (Panel A) and 4 or more child families (Panel B). The larger

(smaller) markers signify that the estimated effect of Head Start on some college for the family is

above (below) median. We also include a 45 degree line for reference. The figure shows that, in

general, the Head-Start-representative weights are higher than the FFE weights for small families

that experience smaller impacts of Head Start. Conversely, the representative weights are lower

relative to the FFE weights for large families that experience larger impacts of Head Start. Hence,

we should expect the reweighted estimates to show a reduced impact of Head Start relative to FFE.

The reweighted estimate of the impact of Head Start for the eligible, participant, and sibling

populations is between 0.071, 0.031, and 0.075, respectively, and are all statistically insignificant.

Setting aside the lack of precision in the estimates, these represent moderately large impacts relative

to the 43.7% average rate of college going among Head Start eligible children. But comparing to the

FFE coefficient, these effects imply a 38% to 74% smaller impact on college attendance. Putting

these estimates in broader perspective, they are consistent with the lower bound of unadjusted

estimates for all participants from other FFE studies (Bauer and Schanzenbach, 2016; Deming,

2009), and estimates from the county roll-out of Head Start (Bailey, Sun and Timpe, 2018).

Panel B of Table 5 presents results for the Economic Sufficiency Index in the PSID. Our FFE

estimate shows a statistically insignificant 0.023 SD decline in this index associated with Head Start.

When we reweight the effects, we find slightly larger negative effects for Head Start eligible children

and Head Start participants, and a positive effect (0.03 SD) for siblings. It bears emphasizing,

though, that the results are not precisely estimated, such that the 95% confidence intervals allow

for a sizeable positive impact of Head Start in spite of the small or negative point estimate. For

example, the confidence interval for the economic index for whites allows for a Head-Start-induced

improvement of 0.16 SD or a reduction of 0.21 SD for Head Start participants. This limits our

ability to make firm conclusions about Head Start’s impact on this outcome.

The following four panels of Table 5 show the CNLSY FFE estimates, those reported in Deming

(2009) and our replication, and our reweighted estimates. The panels report effects for high school

graduation, idleness (not in school or at work), diagnosis of a learning disability, and poor health

(based on self-reported health status). The FFE estimates indicate that Head Start leads to a 8.5

45We show in the appendix that this discrepancy is not due to faulty replication of the GTC estimates in a smaller
sample. We estimate a coefficient of 0.232 (se: 0.094) for this sample and outcome in our replication.
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p.p. increase in high school graduation (p < 0.01), 7.2 p.p. decline in idleness (p < 0.10), 5.9

p.p. decline in having a learning disability (p < 0.01), and a 6.9 p.p. decline in reporting poor

health (p < 0.01). The reweighted estimate for participants for high school is 40% smaller, and

marginally significant (p < 0.10). We also see a substantial 34% decline in the estimated impact on

idleness when we consider the impact on participants. The disability and poor health estimates are

relatively more stable; the reweighted impacts on participants are just 4% and 25% smaller than

the FFE estimate.

In the final column of the table, we test whether the difference between the reweighted estimate

for participants and the FFE estimate is statistically significant. We bootstrap the standard errors

for this difference by taking draws with replacement from the sample and performing the FFE

estimation and reweighting again. We do this 1,000 times and obtain the standard error of our

difference as the standard deviation of the 1,000 estimated FFE-reweighted differences. We find

that the reweighted estimates for some college (PSID) and high school graduation (CNLSY) are

statistically different than the FFE estimate at the 5% and 10% levels, respectively. The remainder

of the outcomes are more imprecisely estimated, and therefore we can not reject that the reweighted

estimate is the same as the FFE estimate (in these cases the quantitative differences are non-trivial).

Returning to the PSID, Appendix Tables A.11 and A.12 show the PSID FFE estimates and

reweighted results for high school and the good health index for whites, and the corresponding

results for blacks. Overall, the results suggest little support for a positive long term effect of Head

Start. This is true for the FFE estimates and the reweighted estimates. Nonetheless, the magnitude

of the estimates can vary importantly with reweighting, particularly for whites. This makes sense

since the identifying sample is a much smaller share of the overall sample for whites relative to

blacks. For example, the FFE estimate for the good health index for whites is -0.265 SD, but

reweighting for the Head Start participant population changes this estimate to -0.423. In contrast,

the coefficients are relatively stable for blacks.46

6.3.2 More Evidence on the Role of Family Size

One key pattern in Tables 3 and 5 and Figure 3 is that larger families appear to have larger

returns to Head Start than do smaller families. We believe this to be a new finding in the Head

Start literature. We note that this was not a pattern we initially set out to test in this study, so

there is some chance of this finding being inadvertently driven by chance and our limited sample

sizes. However we think that this may provide an interesting hypothesis for future studies. Also,

we first observed this pattern in the PSID data, and so our CNLSY results (see e.g. Columns 3, 4,

and 5 of Table 3) are to some degree an out of sample confirmation of this pattern.

We have examined whether the larger coefficients for larger family sizes in Table 3 are driven

46For the black sample, most estimates are also statistically insignificant. However, for the age 30 Economic
Sufficiency Index, the reweighted estimates indicate statistically significant negative impacts of Head Start. For
example, for a target population of participants the reweighted coefficient on Head Start is -0.208 (s.e. = 0.072).
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by family size standing in for other covariates. In Appendix Table A.13 we perform a “horse race”

analysis, comparing whether heterogeneous coefficients load on to family size, or other covariates.

This table shows that the heterogeneity with family size is robust to also allowing for heterogeity

along other covariates. We have also experimented with specifications that test for whether larger

family size is merely proxying for “longer sibling cohort span,” and do not find evidence that this

is the case.

6.3.3 Additional FFE Estimates

Continuing with our analysis of the PSID, we present the FFE results for the economic and

health indices measured at age 40, together with the indices at age 30 for comparison, in Appendix

Table A.14. Overall, the results suggest little support for a positive long term effect of Head

Start. We come to the same conclusions when we aggregate the inputs using principal components

analysis (see Appendix Table A.15). Our overall conclusions are not changed importantly by looking

at specific outcomes or subsamples. We have also estimated regressions for each of the inputs to

the economic and health indices, which we include in the Appendix as Tables A.16, A.17, A.18,

and A.19. Appendix Table A.20 shows the regression results for the additional outcomes analyzed

in GTC, earnings between ages 23 to 25, and not having committed a crime. Across these tables,

there is no systematic evidence that Head Start impacts long term outcomes.47

Motivated by the prior findings of differential effects by gender (Carneiro and Ginja, 2014;

Deming, 2009), in Appendix Table A.21 we look to see whether our mean results are obscuring

this form of heterogeneity in our setting. Curiously, we find some evidence of significant negative

effects of Head Start among men, in particular for health and economic outcomes at age 40. On

the other hand, we find a positive and significant effect of Head Start on the probability that men

attain some college. The effects estimated for women are never individually significant, but also

not statistically different from men for many outcomes as indicated by the p-value of the difference

in the table. The one exception is for economic outcomes observed at age 40, where women are

found to have significantly better returns to Head Start participation than observed for men.

Another source of heterogeneity which could generate a discrepancy between our results and

GTC is the fact that our sample includes later (younger) cohorts, whose Head Start experience may

differ from earlier participants. In Appendix Table A.22, we find some support for a decreasing

impact of Head Start across cohorts for the age 40 indices, but also find a larger improvement in

the health index at age 30 for more recent cohorts. Thus, this does not appear to reconcile our

findings.48

47Moreover, while we find a significant increase in ataiment of some college, when we examine the outcome of college
completion, we obtain insignificant negative point estimates for the pooled sample (beta = -0.033, se = 0.023), for
black children (beta = -0.014, se = 0.018), and for white children (beta = -0.058, se = 0.043).

48Moreover, when we instead use a binary indicator for more recent cohorts, we do not find a statistically significant
difference in the impacts of Head Start, indicating that these results are sensitive to functional form assumptions.
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7 Conclusion

Fixed effects can provide a useful approach for treatment effect estimation. The internal validity

of this strategy, which has been the subject of much debate, relies on the assumption that treatment

is randomly assigned to units in a panel. In this article, we show that an additional assumption is

needed for the external validity of results: that panels with variation (switchers) have comparable

treatment effects to panels without variation (non-switchers). In other words, fixed effects estimates

are generalizable only if there is no selection into identification.

We show that this assumption is not trivial in the context of family fixed effects. We document

across multiple settings that switching families are systematically larger and show that this can

induce bias in estimation. We develop a novel approach to recover ATE’s for representative popu-

lations, which upweights observations that are under-represented in the identifying sample relative

to the population of interest. We demonstrate that this reweighting approach performs well using

Monte Carlo simulations.

We apply these lessons to an analysis of the long term effects of Head Start in the PSID and

CNLSY using family fixed effects. Relative to prior evaluations of Head Start using FFE in the

PSID, we use a sample three times as large in size, include longer run (up to age 40) outcomes, and

expand the set of outcomes under consideration. Echoing prior findings, we find using FFE that

Head Start significantly increases the likelihood of completing some college and graduating from

high school, and decreases the likelihood of being idle, having a disability, or reporting poor health.

Using our reweighting methods, we estimate that Head Start leads to a 3.1 p.p. increase in the

likelihood of attending some college for Head Start participants, and a 7.1 p.p. increase for Head

Start eligible. The ATE estimate for participants is 70% smaller than the FFE estimate, a difference

which is statistically significant at the 5% level. We examine several other outcomes and find few

statistically significant results. In sum, the FFE results in the PSID indicate that Head Start has

little effect on many long term outcomes on average, with the exception of completing some college,

and perhaps even detrimental effects for men. In the CNLSY, for high school graduation we find

that the reweighted estimate for participants (5.1 p.p.) is 40% smaller than the FFE estimate,

a difference which is statistically different at the 10% level. We find less change associated with

reweighting for other outcomes.

Overall, we interpret our findings as pointing primarily toward “increased uncertainty” and to

a limited degree toward “zero effects” of the Head Start program. This suggests that there is some

discordance between the long-term results from the FFE design, and new estimates using other

designs, which generally produce larger and more robust effects of this intervention. We leave it to

future research to reconcile these findings.
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8 Figures

Figure 1: Within-Family Variation in Head Start and Attendance of Some College (PSID)
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Notes: This figure depicts the identifying variation used in a FFE regression of some college on an
indicator for participation in Head Start. Each marker represents the number of individuals that
exhibit a particular deviation from the mean Head Start attendance of their family and from the
mean attendance of some college of their family. Deviations are defined as the difference between
individual attendance of Head Start/some college (1 or 0) and mean of Head Start/some college of
one’s family. The marker size represents the unweighted number of individuals. We also include a
best-fit line, weighted by the number of individuals in each marker. Source: Panel Study of Income
Dynamics, 1968-2011 waves.
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Figure 2: Likelihood of Being a Switcher Family Increases with Family Size and P(treatment)
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(b) Head Start in CNLSY (c) Migration in Census
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Notes: Panel (a) of this figure plots the observed probability of being in a switching family and of
attending Head Start by family size for the following groups in the PSID: Whites, Blacks, children of
mothers with at most a high school degree, and children of mothers with at least some college. Figure
(b) plots analogous markers using data on Head Start participation from the CNLSY. Figure (c) plots
the analogous figure substituting migration for Head Start attendance, from a linking of the 1910 to
1930 censuses used in the analysis and made available from Collins and Wanamaker (2014).
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Figure 3: FFE Weights and Head-Start-Participant-Representative Weights by Family Size and
Some College β (PSID White Sample)

(a) Families with 2-3 Children
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(b) Families with 4+ Children
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Notes: Each marker in this figure indicates the FFE weights and Head-Start-participant-
representative (post-regression) weight for one white switching family. The color of the marker
indicates whether the family has 2-3 children or 4 or more children. The size of the marker indicates
the estimated family-specific beta from a regression of attainment of some college on interactions
between Head Start and family id fixed effects. A larger marker indicates an above median beta,
while a smaller marker indicates a below-median beta. The 45 degree line is included for reference.
Observations above (below) the line are overweighted (underweighted) in the FFE sample relative
to a representative Head Start sample. Source: Panel Study of Income Dynamics, 1968-2011 waves.36



9 Tables

Table 1: Family FE Articles in Top Applied Journals, 2002 to 2017

Binary Indep. Binary Dep. Both Binary Total

AEJ: Applied 7 5 4 9
AEJ: Economic Policy 1 1 1 1
AER 3 1 1 5
AER Papers and Proceedings 2 2 1 3
Journal of Health Economics 5 3 2 7
Journal of Human Resources 7 2 2 12
Journal of Labor Economics 2 1 1 5
Journal of Political Economy 3 1 1 3
Journal of Public Economics 4 5 4 6
QJE 1 4 1 4
Review of Economics and Statistics 2 0 0 3
Total 37 25 18 58

Common Dependent Variables

Schooling/Attainment 24
Test Score 17
Employment/Earnings 16
Birth Weight 8
Health 6
Behavioral Issues/Crime 5

Common Independent Variables

Schooling 8
Birth Weight 5
Health 5
Parental Traits 4
Employment 3
Birth order 3
Means-Tested Public Program 2
Death of Family Member 2
Bombing/Radiation 2

Observations by Sample

Siblings N Total N
p10 469 1,212
p25 1,212 3,255
p50 6,792 17,501
p75 175,686 405,802
p90 750,697 1,582,142

Year Publication Min/Max 2002 2017

Notes: This table presents a summary of FFE articles published between January 2000 and May
2017 in 11 top applied journals, which are listed in the first panel of the table. Articles were
initially idenitified using the search terms “family,” “within family,” “sibling,” “twin,” “mother,”
“father,” “brother,” “sister,” fixed effect,” “fixed-effect,” and “birthweight” using queries on jour-
nal websites. Siblings N is the number of observations reported for the sample of siblings, while
Total N represents the number of total observations reported. See text for details.
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Table 2: Switchers and Non-Switchers Vary Along Dimensions Other Than Family Size

(1) (2) (3) (4) (5)
Switch Non-Switch T-Stat. (1)=(2) Beta Switch T-Stat (4)

A. Individual Covariates
Fraction female 0.562 0.495 4.067 0.024 0.719

Fraction African-American 0.516 0.111 25.877 0.249 5.640

Mother’s yrs education 9.283 11.230 -21.590 -0.140 -0.751

Father’s yrs education 9.190 11.371 -19.594 -0.389 -1.784

Had a single mother at age 4 0.252 0.099 10.049 0.055 2.543

Family income (age 3-6) (CPI adjusted) 31809 52574 -24.735 -4759 -5.719

Mother employed, age 0 0.508 0.570 -3.099 0.055 2.339

Mother employed, age 1 0.517 0.543 -1.342 0.058 2.359

Mother employed, age 2 0.536 0.554 -0.951 0.118 3.565

Household size at age 4 5.487 4.451 12.343 0.755 4.936

Fraction low birth weight 0.077 0.058 1.971 0.010 0.702

Observations 1103 5500 6603 7372 7372

B. Inverse Selection into Identification Wts.

Pr(switch)/Pr(Head Start), Whites 2.976 2.318
(1.99) (1.98)

Pr(switch)/Pr(Head Start), Blacks 1.987 1.148
(1.21) (1.10)

Notes: Panel A of this table presents comparisons of the characteristics of individuals in switching families and non-switching families.
Columns 1, 2, and 3, respectively, show the mean characteristics of individuals in families that are switchers; individuals in families
that are not switchers; and individuals that attended Head Start (HS) in non-switcher families. Column 3 presents the t-statistic for
the test that columns 1 and 2 are equal. Column 4 shows the estimates from a regression of each row heading on an indicator for being
in a switcher family, with the corresponding t-statistic shown in Column 5, with standard errors clustered on id1968. All controls from
the main specification are included excluding the variable shown in the row heading. All estimates are weighted to be representative of
1995 population; see text for details. Panel B shows the mean and standard deviation of the inverse of the post-regression propensity
score weights when the target is Head Start participants. Pr(switch) and Pr(Head Start) are obtained from a multinomial logit model
as described in the text. Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table 3: Returns to Head Start by Family Size,

and Implications for Regression Estimates

Some College (PSID) HS Grad, Idle, Lrn. Disab. (CNLSY)

CX FE FE FE FE

A. Effects by Family Size

Head Start x 1 child family 0.169∗

(0.091)

Head Start x 2 child family 0.038 -0.126 0.033 -0.067 -0.028
(0.079) (0.099) (0.042) (0.052) (0.025)

Head Start x 3 child family -0.030 0.152∗∗ 0.061 -0.038 -0.070
(0.087) (0.075) (0.060) (0.068) (0.043)

Head Start x 4 child family -0.053 0.251∗∗∗ 0.156∗ -0.002 -0.064
(0.100) (0.091) (0.086) (0.111) (0.049)

Head Start x 5+ child family 0.572∗∗∗ 0.348∗∗∗ 0.277∗∗∗ -0.306∗∗ -0.157∗

(0.119) (0.126) (0.097) (0.139) (0.081)

Head Start x Unknown child family -0.099
(0.108)

Observations 4258 2986 1251 1251 1247

B. Simulated Estimates across Samples

using Family-Size Regression Weights

All 0.046
Siblings 0.037 0.083 0.074 -0.068 -0.053
Switchers 0.069 0.123 0.088 -0.073 -0.060

Notes: Panel A of this table shows the coefficients from a regression of some college on a series of indicators
for whether an individual attended Head Start interacted with an indicator for the number of children in one’s
family. The sample is composed of white individuals. Columns 1 include controls, but not mother f.e., and
standard errors are clustered at 1968 family id. Column 2 includes mother fixed effects, and standard errors
clustered by mother id. The bottom rows show the weighted average of the coefficients when using regression
weights, ωz (defined in Section 3), determined by the overall distribution of families (”All”), the distribution
of 2+ child families (”Siblings”), and the distribution of 2+ child families that have variation in Head Start
attendance (”Switchers”). * p < .10, ** p < .05, *** p < .01. Source: Panel Study of Income Dynamics,
1968-2011 waves and Children of the National Longitudinal Study of Youth.
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Table 4: Monte Carlo Experiments: Bias of Reweighting and FFE Relative to True ATE,

and Efficiency of Reweighting Relative to FFE

Bias of FE and Reweight: MSE of Reweight relative to FE:

True ATE FE Reweight + Spline Reweight + Spline

A. Constant TE
Switchers 80 -0.1 -0.2 1.04
Siblings 80 -0.1 -0.0 1.16
All 80 -0.1 -0.2 1.17
HS Participants 80 -0.2 0.4 1.03

B. Large Family TE

Switchers 83.0 -10.6∗ 0.1 0.93
Siblings 49.8 22.6∗ -0.0 0.68
All 40.4 32.0∗ -0.1 0.52
HS Participants 41.2 31.3∗ -0.1 0.53

C. TE linear in Xf

Switchers 93.8 -1.1∗ -0.2 0.5 1.04 1.04
Siblings 80.2 12.5∗ 3.2∗ 0.6 0.98 1.09
All 80.0 12.7∗ 3.2∗ 0.6 0.98 1.10
HS Participants 91.5 1.2∗ 0.3 0.5 1.03 1.09

Notes: This table shows the results from 10,000 Monte Carlo simulations. Each panel of the table shows
results from a different DGP, and each row of the panel is for a different target population. The true DGP
is linear, and is discussed in Section 4.4. The first panel shows results where Head Start has a constant
treatment effect (TE) for all individuals; the second shows results where Head Start (HS) has no effect on
individuals from small families (3 or fewer children) and a large effect for families with many children (4 or
more children); and the third panel shows results where treatment effects that are linear in Xf . Column 1,
“True Beta,” presents the true average increase in the probability of completing some college for participants
in Head Start in the sample, which is a function of the DGP and sample composition. Columns 2, 3, and 4
present the bias of various estimation strategies, defined as the difference between the estimated effects of
Head Start and the true beta. The estimated effects come from a LPM, propensity-score weighted LPM,
and propensity-score reweighted LPM when we include a spline in Xf in the propensity score, respectively.
Columns 5 and 6 present the ratio of the mean squared error (MSE) of the two reweighting estimators
relative to LPM. Reweighted estimates are obtained using in-regression weighting, with weights adjusting
for the representativeness of switchers and the conditional variance of Head Start within families. All betas
are multiplied by 1,000. * p < .01.
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Table 5: Head Start Impact for Representative Eligible Children, Participants, and Siblings

Using Post-Regression Reweighting Method

FFE Reweighted ATE, Target = Diff. b/w

GTC/Deming Expand Sample/ HS Eligible Participants Siblings FFE and
Replicate Participant ATE

A. Some College (PSID)

Head Start 0.281∗∗ 0.120∗∗ 0.071 0.031 0.075 0.089∗∗

(0.108) (0.053) (0.060) (0.061) (0.057) (0.041)

Y Mean in Target – 0.556 0.387 0.437 0.556

B. Economic Sufficiency Index, Age 30 (PSID)

Head Start – -0.023 -0.045 -0.025 0.025 -0.002
– (0.102) (0.085) (0.092) (0.088) (0.083)

Y Mean in Target – 0.213 -0.198 -0.485 0.213

C. High School Graduation (CNLSY)

Head Start 0.086∗∗∗ 0.085∗∗∗ 0.043 0.051∗ 0.024 0.035∗

(0.031) (0.031) (0.031) (0.029) (0.034) (0.021)

Y Mean in Target – 0.776 0.734 0.766 0.776

D. Idle (CNLSY)

Head Start -0.071∗ -0.072∗ -0.054 -0.047 -0.060 0.025
(0.038) (0.038) (0.038) (0.037) (0.041) (0.025)

Y Mean in Target – 0.197 0.221 0.201 0.197

E. Learning Disability (CNLSY)

Head Start -0.059∗∗∗ -0.059∗∗∗ -0.034∗ -0.044∗∗ -0.038∗∗ 0.015
(0.021) (0.021) (0.019) (0.018) (0.019) (0.014)

Y Mean in Target – 0.051 0.055 0.041 0.051

F. Poor Health (CNLSY)

Head Start -0.070∗∗∗ -0.069∗∗∗ -0.056∗∗ -0.066∗∗ -0.049∗ 0.003
(0.026) (0.027) (0.027) (0.027) (0.029) (0.018)

Y Mean in Target – 0.103 0.098 0.074 0.103

Notes: Column 1 of this table shows the FFE estimated impacts of Head Start for whites from GTC or for the whole sample from
Deming (2009). Column 2 shows the FFE estimate using our expanded sample for PSID outcomes and using our replication sample
for CNLSY outcomes. The outcomes in Panels A and B are taken from the PSID white sample, and the outcomes in Panels C to F are
taken from the CNLSY sample. Columns 3 to 5 present reweighted estimates of the effect of Head Start for four target populations
(shown in the column header) using the post-regression reweighting procedure described in the text. Column 6 presents the difference
in the estimate in column 2 (FFE) and column 4 (reweighted for participants), with the standard error obtained from a bootstrap
procedure described in the text. ”–” is used to indicate that the information is not available. Sample size is N=2,986 for the expanded
sample, and 1,036 for GTC. Standard errors are clustered on mother id. * p < .10, ** p < .05, *** p < .01.
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A Appendix: Additional Results

A.1 Derivation of Propensity Score Weighting

In this section, we provide a simple derivation of the weighting scheme that we propose to obtain
the ATE from the switchers sample. We introduce a concrete example in which treatment effect is
determined by one variable, race, and in which there are only few families in the switcher sample.
This makes it easy to derive the share of the target population corresponding to each individual in
the switcher sample.

A.1.1 Thought Experiment

Suppose that the target population is 75% black and 25% white. The switchers sample has 1
white family with 3 kids and 2 black families with 3 and 5 kids, respectively. We now calculate the
share of the target sample corresponding to each family. The share for each individual in a white
family is straightforward: 25%. The share for each black family is proportional to the number of
individuals in the family, normalized so that the total share across the two families is 75%. Thus,
the share for the first family is 0.75× 3

8 . The share for the second black family is 0.75× 5
8 .

A.1.2 Notation

Under the setup above, the weight that should be given to a switcher family f with race r, sfr,
can be written as:

sfr = Nr
Ntarget

× 1
Nr,switch

×Nf

where Nr is the number of individuals with race r, Ntarget is the number of individuals in the
target sample, Nr,switch is the number of individuals with race r in the switcher sample, and Nf is
the number of individuals in family f.

This is equivalent to:
sfr = pr(race|target)× 1

pr(race|switch)×Nswitch
×Nf

sfr = pr(race|target)
pr(race|switch) ×

Nf

Nswitch

sfr = pr(race|target)
pr(race|switch) × pr(f |switch)

A.1.3 Estimation

We can obtain an estimates of this as follows:

1. We obtain an estimate of pr(target|race) as fitted values from a regression of being in the
target on b.

This is equal to pr(race|target)∗pr(target)
pr(race) by Bayes rule.

2. We obtain an estimate of pr(switch|race) as fitted values from a regression of being a switcher
on b.

This is equal to pr(race|switch)∗pr(switch)
pr(race) by Bayes rule.

Taking the ratio of these, we have pr(race|target)
pr(race|switch) ×

pr(target)
pr(switch) .

To obtain sfr we need to multiply this ratio by pr(f |switch),
Nf

Nswitch
, and divide by pr(target)

pr(switch) .

Since pr(target)
pr(switch) is constant across all families, we can operationalize this through normalization of

the weights.
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A.2 Supplementary Figures and Tables

Figure A.1: Popularity of Family Fixed Effects Articles
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Notes: These figures display the data from our survey of FFE papers
published from January 2000 to May 2017 in 11 leading journals that
publish applied microeconomics articles. Figure (a) plots the number of
FFE articles published in each year, and Figure (b) plots the average
number of Google Scholar citations, as of May 2017, among the articles
published in a given year.
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Figure A.2: Illustrative Model of the Role of Family Size in Switching

P (HSSwitchingFamily) = 1− (1− π)Zf − πZf
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Notes: This figure plots the theoretical function: P (HSSwitchingFamily) = 1 − (1 − π)Zf − πZf ,
where Zf is the number of children in a family and π is the probability of attending Head Start,
for 2-, 3-, 4-, and 5 (plus)- child families.
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Figure A.3: Examining P-Score Overlap: Predicted Probability of Being in Head Start (PSID
White Sample)
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Notes: This figure shows kernel density plots (bandwidth = 0.01) of the predicted probability of
being a Head Start participant for switchers and non-switchers that are Head Start participants.
The sample consists of white individuals in the PSID.
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Figure A.4: Examining P-Score Overlap: Predicted Probability of Being Head-Start-Eligible (PSID
White Sample)
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Notes: This figure shows kernel density plots (bandwidth = 0.01) of the predicted probability of
being Head Start eligible for switchers and non-switchers that are Head-Start-eligible. The sample
consists of white individuals in the PSID.

Table A.1: Head Start Attendance and Within-Family Variation in Attendance by Family Size
(PSID)

Number of Children in Family:

2 3 4 5+ Total

Share of Family in Head Start (π) 0.157 0.222 0.195 0.206 0.182

Share with Switching 0.121 0.202 0.242 0.471 0.174

All Participants in HS in Family 0.096 0.125 0.093 0.049 0.102

No Participants in HS in Family 0.783 0.672 0.665 0.480 0.724

Notes: This table shows the sources of switching by family size. The first two rows show the
likelihood of attending Head Start by family size and the likelihood of having variation in Head
Start within a family (switching). The final two rows examines whether differences in rates of
switching across family sizes are attributable to variation across family sizes in having all children
attend Head Start (row 3) or variation in having no children attend Head Start (row 4).
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Table A.2: Change in Weighting of Regression Estimates Across Sibling and Switcher Samples
(PSID)

Number of Children in Family:

1 2 3 4 5 +

A. Share of Sample

All Sample 0.123 0.273 0.238 0.147 0.134

Siblings Sample 0.000 0.345 0.300 0.186 0.169

Switchers Sample 0.000 0.210 0.271 0.197 0.322

B. Variance in Head Start
All Sample 0.089 0.104 0.121 0.127 0.132

Siblings Sample 0.000 0.024 0.050 0.059 0.068

Switchers Sample 0.000 0.045 0.098 0.131 0.174

C. Regression weights

All Sample 0.171 0.257 0.284 0.117 0.101

Siblings Sample 0.000 0.338 0.374 0.154 0.134

Switchers Sample 0.000 0.256 0.307 0.190 0.248

Notes: This table shows the change in the composition of the PSID sample moving from
all individuals (“All Sample”) to individuals that have at least one other sibling in the
sample (“Siblings Sample”) to individuals in families that have variation in Head Start
attendance (“Switchers sample.”) Panel A shows the share of individuals in each sample
that come from a family with 1 child (zero siblings), 2 children, etc. Panel B shows the
variance in Head Start for each family size and sample. For switchers, this is calculated
net of family fixed effects. Panel C shows the ”regression weight” given to each family size
in a given sample, denoted as ωz and defined formally in Section 3. Source: Panel Study
of Income Dynamics, 1968-2011 waves.

47



Table A.3: Demographic Characteristics of Head Start Sample (PSID)

All Head Start No Head Start Sibling Sample

Head Start 0.076 1.000 0.000 0.073

Other preschool 0.282 0.000 0.305 0.259

Fraction African-American 0.150 0.618 0.111 0.154

Fraction female 0.504 0.548 0.501 0.501

Fraction low birth weight 0.060 0.114 0.056 0.061

Had a single mother at age 4 0.112 0.296 0.091 0.103

Fraction whose mother completed hs 0.717 0.632 0.724 0.689

Fraction whose father completed hs 0.683 0.557 0.692 0.654

Fraction eldest child in family 0.368 0.341 0.371 0.339

Age in 1995 23.830 18.605 24.262 25.063
(9.84) (7.76) (9.87) (10.06)

Mother’s yrs education 11.116 10.208 11.190 10.942
(2.76) (2.32) (2.78) (2.81)

Father’s yrs education 11.238 10.159 11.314 11.076
(3.23) (2.70) (3.25) (3.35)

Family income (age 3-6) (CPI adjusted) 50339 28553 52719 50973
(35814.01) (17212.32) (36509.36) (37315.99)

Household size at age 4 4.535 4.814 4.504 4.778
(1.68) (2.06) (1.63) (1.64)

Observations 7363 1345 6018 5355

Notes: This table shows the mean demographic characteristics of the sample, weighted to be representative
of 1995 population; see text for details. Standard deviations, shown in parentheses, are omitted for binary
variables. CPI-adjusted income reported in 1999 dollars. Source: Panel Study of Income Dynamics, 1968-2011
waves.

48



Table A.4: Outcomes of Interest for Head Start Sample (PSID)

All Head Start No Head Start Sibling Sample

Fraction completed hs 0.913 0.878 0.916 0.912

Fraction attended some college 0.531 0.428 0.539 0.532

Fraction not booked/charged with crime 0.899 0.889 0.900 0.898

Avg. Earnings age 23-25 (CPI adjusted) 20410 14391 20818 20633
(24927) (12000) (25517) (26547)

Economic Sufficiency Index at 30 0.094 -0.601 0.151 0.096
(1.03) (1.05) (1.01) (1.03)

Economic Sufficiency Index at 40 0.020 -0.532 0.053 0.025
(1.01) (0.95) (1.01) (1.04)

Good Health Index at 30 0.004 -0.558 0.050 0.017
(1.03) (1.26) (0.99) (0.99)

Good Health Index at 40 0.011 -0.486 0.033 0.015
(1.01) (1.25) (1.00) (0.96)

Observations 7363 1345 6018 5355

Notes: This table shows the means for the main outcomes of interest, weighted to be representative of
1995 population; see text for details. Note that the fraction not booked/charged with a crime restricted
to individuals that responded to the PSID in 1995 who were between the ages of 16 and 50 in that year.
CPI-adjusted income reported in 1999 dollars. Standard deviations, shown in parentheses, are omitted for
binary variables. Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table A.5: Summary Statistics for Inputs to Summary Indices (PSID)

All Head Start No Head Start Sibling Sample

Inputs to Economic Sufficiency Index, 30

Ever on AFDC/TANF by age 30 0.062 0.220 0.049 0.060

Fraction of last 5 yrs on Food Stamps/SNAP, age 30 0.064 0.151 0.056 0.071
(0.20) (0.30) (0.19) (0.22)

ln(mean earnings in last 5 years), age 30 9.661 9.415 9.676 9.659
(1.06) (0.91) (1.07) (1.07)

Fraction of last 5 yrs with positive earnings, age 30 0.895 0.887 0.896 0.898
(0.25) (0.26) (0.25) (0.25)

Fraction of last 5 yrs ever unemployed, age 30 0.146 0.173 0.144 0.150
(0.24) (0.27) (0.23) (0.24)

Mean Inc. Rel. Pov. in last 5 years, age 30 385.831 233.796 396.729 385.933
(305.98) (155.44) (311.18) (291.36)

Fraction completed college 0.209 0.073 0.220 0.220

Inputs to Economic Sufficiency Index, 40

Ever on AFDC/TANF by age 40 0.068 0.163 0.062 0.067

Fraction of last 5 yrs on Food Stamps/SNAP, age 40 0.043 0.098 0.040 0.043
(0.16) (0.25) (0.16) (0.16)

ln(mean earnings in last 5 years), age 40 9.962 9.779 9.968 9.957
(1.15) (0.90) (1.16) (1.15)

Fraction of last 5 yrs with positive earnings, age 40 0.850 0.867 0.849 0.849
(0.31) (0.29) (0.31) (0.31)

Fraction of last 5 yrs ever unemployed, age 40 0.094 0.122 0.093 0.098
(0.20) (0.24) (0.19) (0.20)

Mean Inc. Rel. Pov. in last 5 years, age 40 436.769 281.489 443.338 434.280
(366.03) (183.89) (370.36) (361.58)

Fraction of last 5 yrs owned home, age 40 0.500 0.287 0.510 0.522
(0.44) (0.42) (0.44) (0.44)

Inputs to Good Health Index, 30

Fraction of last 5 yrs smoked less than 1 cigarette/day, age 30 0.745 0.668 0.753 0.755
(0.41) (0.45) (0.41) (0.40)

Fraction of last 5 yrs reported good or better health, age 30 0.948 0.903 0.951 0.950
(0.17) (0.24) (0.17) (0.17)

Mean BMI in last 5 years, age 30 26.569 28.766 26.333 26.615
(6.68) (6.74) (6.63) (6.85)

Inputs to Good Health Index, 40

Fraction of last 5 yrs smoked less than 1 cigarette/day, age 40 0.738 0.714 0.739 0.728
(0.42) (0.44) (0.42) (0.42)

Fraction of last 5 yrs reported good or better health, age 40 0.919 0.871 0.921 0.922
(0.22) (0.29) (0.22) (0.22)

Mean BMI in last 5 years, age 40 27.504 30.191 27.327 27.433
(5.92) (7.42) (5.77) (5.85)

Observations 7363 1345 6018 5355

Notes: Weighted to be representative of 1995 population; see text for details. SD, in parentheses, are
omitted for binary variables. Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table A.6: N’s for Control Covariates (PSID)

All Head Start No Head Start Sibling Sample

Head Start 7372 1354 6018 5361

Other preschool 7372 1354 6018 5361

Fraction African-American 7372 1354 6018 5361

Fraction female 7372 1354 6018 5361

Fraction low birth weight 5366 970 4396 4555

Had a single mother at age 4 6678 1285 5393 4672

Fraction whose mother completed hs 7231 1332 5899 5360

Fraction whose father completed hs 6596 1034 5562 4875

Fraction eldest child in family 7372 1354 6018 5361

Age in 1995 7372 1354 6018 5361

Mother’s yrs education 7223 1331 5892 5356

Father’s yrs education 6596 1034 5562 4875

Family income (age 3-6) (CPI adjusted) 6086 1145 4941 4338

Household size at age 4 6251 1187 5064 4420

Observations 7372 1354 6018 5361

Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table A.7: N’s for Main Outcomes (PSID)

All Head Start No Head Start Sibling Sample

Fraction completed hs 7372 1354 6018 5361

Fraction attended some college 7372 1354 6018 5361

Fraction not booked/charged with crime 5005 802 4203 3591

Avg. Earnings age 23-25 (CPI adjusted) 4866 783 4083 3675

Economic Sufficiency Index at 30 7372 1354 6018 5361

Economic Sufficiency Index at 40 4085 613 3472 2845

Good Health Index at 30 4749 791 3958 3600

Good Health Index at 40 2228 312 1916 1673

Observations 7372 1354 6018 5361

Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table A.8: N’s for Auxiliary Outcomes (PSID)

All Head Start No Head Start Sibling Sample

Inputs to Economic Sufficiency Index, 30

Ever on AFDC/TANF by age 30 7372 1354 6018 5361

Fraction of last 5 yrs on Food Stamps/SNAP, age 30 4186 713 3473 2805

ln(mean earnings in last 5 years), age 30 4202 620 3582 3159

Fraction of last 5 yrs with positive earnings, age 30 4378 656 3722 3295

Fraction of last 5 yrs ever unemployed, age 30 4259 634 3625 3184

Mean Inc. Rel. Pov. in last 5 years, age 30 5293 891 4402 4068

Fraction completed college 7372 1354 6018 5361

Inputs to Economic Sufficiency Index, 40

Ever on AFDC/TANF by age 40 4085 613 3472 2845

Fraction of last 5 yrs on Food Stamps/SNAP, age 40 1972 250 1722 1423

ln(mean earnings in last 5 years), age 40 1695 221 1474 1266

Fraction of last 5 yrs with positive earnings, age 40 1829 236 1593 1369

Fraction of last 5 yrs ever unemployed, age 40 1825 236 1589 1365

Mean Inc. Rel. Pov. in last 5 years, age 40 2152 296 1856 1613

Fraction of last 5 yrs owned home, age 40 2292 290 2002 1625

Inputs to Good Health Index, 30

Fraction of last 5 yrs smoked less than 1 cigarette/day, age 30 2267 385 1882 1742

Fraction of last 5 yrs reported good or better health, age 30 3763 579 3184 2806

Mean BMI in last 5 years, age 30 3248 587 2661 2528

Inputs to Good Health Index, 40

Fraction of last 5 yrs smoked less than 1 cigarette/day, age 40 1280 182 1098 930

Fraction of last 5 yrs reported good or better health, age 40 1463 182 1281 1116

Mean BMI in last 5 years, age 40 2037 307 1730 1486

Observations 7372 1354 6018 5361

Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table A.9: Effect of Head Start on Pre-Head-Start Outcomes (PSID)

All Sibs Mom FE Blk, FE Wht, FE

Low birth weight

Head Start 0.040∗ 0.045∗ -0.016 -0.018 -0.029
(0.021) (0.023) (0.026) (0.033) (0.042)

Other preschool 0.003 0.003 -0.012 -0.056∗∗ -0.003
(0.012) (0.013) (0.023) (0.027) (0.027)

Observations 5366 4555 4500 1872 2622

Disabled
Head Start -0.006 -0.017 -0.010 -0.016 -0.006

(0.027) (0.030) (0.030) (0.036) (0.051)
Other preschool 0.018 0.018 0.021 0.032 0.017

(0.019) (0.022) (0.028) (0.049) (0.032)

Observations 3516 2955 2661 1102 1555

Single mom at age 4

Head Start 0.020 0.025 0.027 -0.007 0.051
(0.015) (0.020) (0.024) (0.022) (0.040)

Other preschool 0.022∗∗ 0.020∗ 0.008 0.006 0.011
(0.009) (0.011) (0.017) (0.031) (0.018)

Observations 6678 4672 4467 1939 2522

Family income (age 1) (CPI adjusted)

Head Start 0.000∗∗ -0.000∗∗∗ 0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

Other preschool -0.000∗∗∗ -0.000∗∗∗ -0.000 0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

Observations 6219 4313 4023 1719 2298

Family income (age 2) (CPI adjusted)

Head Start 0.000 -0.000 -0.000 0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

Other preschool -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

Observations 6274 4391 4151 1757 2388

Mom working at age 1

Head Start 0.001 0.011 0.049 0.002 0.080
(0.018) (0.022) (0.039) (0.033) (0.073)

Other preschool -0.001 -0.002 -0.017 -0.078∗ -0.014
(0.013) (0.016) (0.030) (0.043) (0.034)

Observations 6219 4313 4023 1719 2298

Mom working at age 2

Head Start 0.025 0.028 -0.041 -0.008 -0.077
(0.021) (0.023) (0.040) (0.036) (0.073)

Other preschool 0.026∗ 0.032∗ 0.015 -0.013 0.017
(0.015) (0.018) (0.031) (0.044) (0.036)

Observations 6274 4391 4151 1757 2388

Notes: Weighted to be representative of 1995 population; see text for details. SE clustered at 1968
family id in columns 1 and 2 and at mother id level otherwise. * p < .10, ** p < .05, *** p < .01.
Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table A.10: Test of Conditional Independence Assumption:

Do Individuals in the Target Population Have Differential Treatment Effects?

Eligible Participants

Some College (Whites, PSID)

In Target -0.056 -0.072
(0.058) (0.058)

Observations 306 315

Economic Sufficiency Index (Whites, PSID)

In Target -0.006 -0.054
(0.084) (0.089)

Observations 306 315

High School Graduation (CNLSY)

In Target 0.006 0.005
(0.030) (0.019)

Observations 1012 1251

Idle (CNLSY)

In Target 0.015 -0.017
(0.038) (0.024)

Observations 1012 1251

Learning Disability (CNLSY)

In Target -0.030 -0.024∗

(0.019) (0.013)

Observations 1012 1251

Poor Health (CNLSY)

In Target -0.009 -0.035∗

(0.027) (0.018)

Observations 1012 1251

Notes: Each cell of this table shows an estimate from a regression of the family-specific
impact of Head Start on an indicator for whether an individual is in the target population.
Regressions are weighted by our constructed propensity score weights. The first two panels
use data from the PSID white sample, and the final four panels use data from the CNLSY.
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Table A.11: Additional Outcomes for Representative White Eligible, Participants, and Siblings
(PSID)

Using Post-Regression Reweighting Method

FFE Reweighted, Target =

GTC Expand Sample HS Eligible Participants Siblings

A. High School Graduation

Head Start 0.203∗∗ -0.015 -0.036 -0.033 -0.030
(0.098) (0.045) (0.043) (0.047) (0.051)

Y Mean in Target – 0.921 0.852 0.848 0.921

B. Good Health Index, Age 30

Head Start – -0.265 -0.226 -0.423 -0.157
– (0.249) (0.267) (0.307) (0.319)

Y Mean in Target – 0.074 -0.061 -0.583 0.074

Notes: Columns 1 and 2 of this table show the FFE estimated impacts of Head Start from GTC (2002) and using
our expanded sample for completion of high school (panel A) and the Good Health Index at age 30 (panel B). The
remaining columns present reweighted estimates of the effect of Head Start for three target populations (shown in
the column header) using the post-regression reweighting procedure described in the text. ”–” is used to indicate
that the information is not available. Sample size is N=2,986 for the expanded sample in panel A, and 1,959 for the
expanded sample in panel B, and 1,036 for GTC. Standard errors are clustered on mother id. * p < .10, ** p < .05,
*** p < .01. Source: Panel Study of Income Dynamics, 1968-2011 waves.

56



Table A.12: Head Start Impact for Representative Black Eligible, Participants, and Siblings (PSID)

Using Post-Regression Reweighting Method

FFE Reweighted, Target =

GTC Expand Sample HS Eligible Participants Siblings

A. High School Graduation

Head Start -0.025 -0.024 -0.018 -0.015 -0.016
(0.065) ( 0.031) (0.025) (0.026) ( 0.023)

Y Mean in Target – 0.862 0.854 0.896 0.862

B. Some College

Head Start 0.023 -0.016 -0.029 -0.029 -0.029
(0.066) (0.036) (0.031) (0.034) (0.031)

Y Mean in Target – 0.396 0.376 0.423 0.396

C. Economic Sufficiency Index, Age 30

Head Start – -0.117 -0.182∗∗∗ -0.208∗∗∗ -0.160∗∗

– (0.081) (0.071) (0.072) (0.070)

Y Mean in Target – -0.552 -0.626 -0.674 -0.552

D. Good Health Index, Age 30

Head Start – 0.024 0.046 0.055 0.031
– (0.149) (0.145) (0.161) (0.134)

Y Mean in Target – -0.357 -0.381 -0.539 -0.357

Notes: Columns 1 and 2 of this table show the FFE estimated impacts of Head Start from GTC (2002) and using
our expanded sample for completion of high school (panel A) and the Good Health Index at age 30 (panel B). The
remaining columns present reweighted estimates of the effect of Head Start for three target populations (shown in
the column header) using the post-regression reweighting procedure described in the text. ”–” is used to indicate
that the information is not available. Sample size is N=2,369 for the expanded sample in panels A, B, and C, and
1,150 for the expanded sample in Panel D, and 762 for GTC. Standard errors are clustered on mother id. * p < .10,
** p < .05, *** p < .01. Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table A.13: Horse Race between Family Size and Index of Non-Family-Size Covariates (PSID White
Sample)

x Fam Size x Index Horse Race

Index = Predicted Head Start
Head Start 0.025 0.073 0.008

(0.063) (0.069) (0.072)
Head Start x 4plus child family 0.281∗∗ 0.250∗∗

(0.112) (0.105)
Head Start x Tercile 1 Predicted Head Start -0.049 -0.116

(0.094) (0.101)
Head Start x Tercile 2 Predicted Head Start 0.212∗ 0.125

(0.113) (0.111)

Observations 2986 2986 2986

Index = Predicted Finish College

Head Start 0.025 -0.088 -0.130
(0.063) (0.083) (0.100)

Head Start x 4plus child family 0.281∗∗ 0.266∗∗

(0.112) (0.112)
Head Start x Tercile 1 Predicted Finish College 0.237∗∗ 0.155

(0.112) (0.121)
Head Start x Tercile 2 Predicted Finish College 0.260∗∗ 0.207

(0.131) (0.142)

Observations 2986 2986 2986

This table shows estimates from a FFE regression of attainment of some college on an indicator for attendance of
Head Start, and an indicator for having a family with 4 or more children (Column 1), dummies for terciles of an
index of predicted Head Start attendance (Column 2, Panel A), dummies for terciles of an index of the predicted
likelihood of finishing college (Column 2, Panel B), and the combination of family size indicator and terciles of the
index (Column 3). The predicted Head Start (finish college) index is created by regressing Head Start attendance
(finish college) on all of the control variables in the PSID analysis, except for the household size variable.
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Table A.14: Impact of Head Start on Economic Sufficiency Index and Good Health Index (PSID)

All Sibs Mom FE Blk, FE Wht, FE

Economic Sufficiency Index, age 30

Head Start -0.147∗∗∗ -0.117∗∗ -0.090 -0.117 -0.023
(0.043) (0.050) (0.064) (0.081) (0.102)

Other preschool 0.184∗∗∗ 0.181∗∗∗ 0.091 0.050 0.099
(0.035) (0.040) (0.062) (0.109) (0.072)

Mean Y 0.094 0.096 0.096 -0.552 0.213
Observations 7372 5361 5361 2369 2986

Economic Sufficiency Index, age 40

Head Start -0.080 -0.071 -0.059 -0.170 -0.081
(0.066) (0.077) (0.100) (0.134) (0.125)

Other preschool 0.112∗ 0.085 0.043 -0.270 0.118
(0.059) (0.077) (0.107) (0.223) (0.122)

Mean Y 0.020 0.025 0.025 -0.670 0.142
Observations 4085 2845 2503 1065 1435

Good Health Index, Age 30

Head Start -0.349∗∗∗ -0.320∗∗∗ -0.148 0.024 -0.265
(0.058) (0.064) (0.143) (0.149) (0.249)

Other preschool 0.087∗∗ 0.096∗∗ 0.081 0.040 0.106
(0.038) (0.045) (0.076) (0.159) (0.084)

Mean Y 0.004 0.017 0.017 -0.357 0.074
Observations 4749 3600 3114 1150 1959

Good Health Index, Age 40

Head Start -0.201∗ -0.175 -0.147 0.031 -0.146
(0.118) (0.141) (0.202) (0.201) (0.393)

Other preschool 0.117 0.095 0.119 0.382∗ 0.038
(0.094) (0.115) (0.130) (0.210) (0.150)

Mean Y 0.011 0.015 0.015 -0.290 0.062
Observations 2228 1673 1306 511 795

Notes: This table shows the estimates from regressions of either the Economic Sufficiency Index at age
30 (panel A), the Economic Sufficiency Index at age 40 (panel B), the Good Health Index at age 30
(panel C), or the Good Health Index at age 40 (panel D) on an indicator for participation in Head
Start and control variables described in the text. Regressions are run on the whole sample (column 1),
siblings (columns 2 and 3), black siblings (column 4) and white siblings (column 5). All columns include
control variables, and columns 3, 4, and 5 include mother fixed effects. The Good Health Index includes
measures of not smoking cigarettes, good self reported health and BMI, averaged over the previous 5
years. The Economic Sufficiency Index includes measures of high school graduation, attendance of some
college, no receipt of Food Stamps/SNAP, no receipt of AFDC/TANF, average earnings, employment,
and unemployment, averaged over the previous 5 years. Estimates are weighted to be representative of
1995 population; see text for details. Standard errors are clustered at 1968 family id in column 1 and at
mother id level otherwise. * p < .10, ** p < .05, *** p < .01. Source: Panel Study of Income Dynamics,
1968-2011 waves.
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Table A.15: Effect of Head Start on Economic and Health Principal Components (PSID)

All Sibs Mom FE Blk, FE Wht, FE

Economic Sufficiency Principal Component, age 30

Head Start -0.174∗∗∗ -0.140∗∗ -0.100 -0.138 -0.031
(0.058) (0.068) (0.084) (0.109) (0.128)

Other preschool 0.295∗∗∗ 0.285∗∗∗ 0.150∗ 0.071 0.166
(0.051) (0.057) (0.087) (0.150) (0.101)

Mean Y 0.154 0.160 0.160 -0.731 0.321
Observations 7372 5361 5361 2369 2986

Economic Sufficiency Principal Component, age 40

Head Start -0.113 -0.093 -0.082 -0.219 -0.127
(0.090) (0.106) (0.131) (0.180) (0.155)

Other preschool 0.209∗∗ 0.173 0.091 -0.291 0.183
(0.086) (0.113) (0.145) (0.296) (0.167)

Mean Y 0.026 0.032 0.032 -0.968 0.199
Observations 4085 2845 2503 1065 1435

Good Health Principal Component, Age 30

Head Start -0.248∗∗∗ -0.228∗∗∗ -0.073 0.057 -0.159
(0.047) (0.052) (0.121) (0.131) (0.208)

Other preschool 0.070∗∗ 0.069∗ 0.063 0.033 0.083
(0.031) (0.037) (0.063) (0.137) (0.069)

Mean Y 0.003 0.013 0.013 -0.309 0.062
Observations 4749 3600 3114 1150 1959

Good Health Principal Component, Age 40

Head Start -0.143 -0.126 -0.101 0.044 -0.174
(0.107) (0.128) (0.200) (0.200) (0.400)

Other preschool 0.101 0.077 0.121 0.288 0.062
(0.089) (0.110) (0.104) (0.221) (0.117)

Mean Y 0.009 0.015 0.015 -0.259 0.056
Observations 2228 1673 1306 511 795

Notes:
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Table A.16: Effect of Head Start on Inputs to Economic Sufficiency Index at age 30 (PSID)

All Sibs Mom FE Blk, FE Wht, FE

High School Graduate

Head Start 0.007 -0.002 -0.011 -0.024 -0.015
(0.018) (0.021) (0.026) (0.031) (0.045)

Other preschool -0.002 -0.008 0.036∗ -0.012 0.046∗

(0.011) (0.014) (0.021) (0.048) (0.024)

Mean Y 0.913 0.912 0.912 0.862 0.921
Observations 7372 5361 5361 2369 2986

Attended Some College

Head Start 0.038 0.039 0.046 -0.016 0.120∗∗

(0.024) (0.029) (0.033) (0.036) (0.053)
Other preschool 0.068∗∗∗ 0.069∗∗∗ 0.034 -0.011 0.043

(0.019) (0.023) (0.039) (0.046) (0.047)

Mean Y 0.531 0.532 0.532 0.396 0.556
Observations 7372 5361 5361 2369 2986

Fraction of last 5 yrs not on Food Stamps/SNAP, age 30

Head Start -0.018 0.011 0.043 0.042 0.076
(0.015) (0.017) (0.033) (0.037) (0.055)

Other preschool -0.003 0.007 -0.019 -0.019 -0.015
(0.007) (0.009) (0.018) (0.047) (0.019)

Mean Y 0.936 0.929 0.929 0.831 0.949
Observations 4186 2805 2175 887 1285

Never on AFDC/TANF by age 30

Head Start -0.028∗ -0.015 -0.009 -0.001 0.001
(0.016) (0.018) (0.020) (0.023) (0.034)

Other preschool 0.022∗∗∗ 0.026∗∗∗ 0.004 -0.010 0.005
(0.008) (0.009) (0.011) (0.025) (0.012)

Mean Y 0.938 0.940 0.940 0.819 0.962
Observations 7372 5361 5361 2369 2986

Fraction of last 5 yrs with positive earnings, age 30

Head Start 0.041∗∗∗ 0.035∗∗ 0.061 0.026 0.088
(0.015) (0.017) (0.038) (0.034) (0.072)

Other preschool 0.013 0.008 0.015 -0.047 0.027
(0.011) (0.013) (0.019) (0.048) (0.020)

Mean Y 0.895 0.898 0.898 0.845 0.907
Observations 4378 3295 2800 1054 1740

Mean Inc. Rel. Pov. in last 5 years, age 30

Head Start -29.579∗∗∗ -27.953∗∗ -16.953 5.860 -24.477
(10.548) (12.160) (14.369) (12.890) (23.499)

Other preschool 42.704∗∗ 46.790∗∗∗ -1.326 -4.147 0.923
(18.606) (17.411) (16.118) (17.769) (18.924)

Mean Y 385.831 385.933 385.933 224.651 412.236
Observations 5293 4068 3694 1514 2175

Fraction of last 5 yrs no unemployment, age 30

Head Start -0.007 -0.001 0.005 -0.013 0.056
(0.015) (0.016) (0.030) (0.031) (0.049)

Other preschool -0.017 -0.013 -0.029 0.022 -0.040
(0.012) (0.014) (0.027) (0.029) (0.032)

Mean Y 0.854 0.850 0.850 0.807 0.857
Observations 4259 3184 2670 981 1683

Notes: This table shows estimates from regressions of the inputs to the Economic Sufficiency Index at
age 30 on an indicator for participation in Head Start together with control variables described in the
text. Estimates are weighted to be representative of 1995 population; see text for details. Standard
errors are clustered at 1968 family id in column 1 and on mother id level otherwise. * p < .10, ** p <
.05, *** p < .01. Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table A.17: Effect of Head Start on Inputs to Economic Sufficiency Index at age 40 (PSID)

All Sibs Mom FE Blk, FE Wht, FE

Fraction of last 5 yrs not on Food Stamps/SNAP, age 40

Head Start 0.001 0.009 0.045 0.054 0.051
(0.019) (0.020) (0.033) (0.044) (0.049)

Other preschool 0.001 0.003 -0.010 -0.013 -0.008
(0.010) (0.013) (0.023) (0.062) (0.023)

Mean Y 0.957 0.957 0.957 0.866 0.971
Observations 1972 1423 1213 564 647

Never on AFDC/TANF by age 40

Head Start 0.008 0.022 -0.009 -0.010 0.002
(0.020) (0.023) (0.030) (0.039) (0.048)

Other preschool 0.016 0.019 0.018 -0.034 0.025
(0.010) (0.012) (0.021) (0.062) (0.021)

Mean Y 0.932 0.933 0.933 0.778 0.959
Observations 4085 2845 2503 1065 1435

Fraction of last 5 yrs with positive earnings, age 40

Head Start 0.026 0.022 0.021 0.073 -0.180
(0.031) (0.038) (0.062) (0.053) (0.130)

Other preschool -0.004 -0.012 -0.026 -0.135∗∗∗ 0.003
(0.027) (0.033) (0.051) (0.052) (0.060)

Mean Y 0.850 0.849 0.849 0.856 0.847
Observations 1829 1369 1078 445 633

Mean Inc. Rel. Pov. in last 5 years, age 40

Head Start 1.769 3.447 32.738 27.251 -11.620
(21.347) (26.202) (30.410) (24.095) (56.148)

Other preschool 97.953∗∗ 101.861∗∗ 24.513 17.035 26.140
(38.986) (47.085) (40.157) (22.343) (50.412)

Mean Y 436.769 434.280 434.280 234.965 466.741
Observations 2152 1613 1272 540 732

Fraction of last 5 yrs no unemployment, age 40

Head Start -0.003 -0.022 -0.028 -0.033 -0.046
(0.022) (0.027) (0.047) (0.056) (0.083)

Other preschool -0.011 -0.011 -0.026 -0.053 -0.016
(0.017) (0.021) (0.037) (0.060) (0.044)

Mean Y 0.906 0.902 0.902 0.841 0.911
Observations 1825 1365 1073 440 633

Fraction of last 5 yrs owned home, age 40

Head Start -0.022 -0.024 0.045 -0.058 0.070
(0.049) (0.056) (0.056) (0.054) (0.121)

Other preschool -0.041 -0.053 -0.057 -0.079 -0.058
(0.037) (0.044) (0.058) (0.079) (0.074)

Mean Y 0.500 0.522 0.522 0.324 0.554
Observations 2292 1625 1391 642 747

Notes: This table shows estimates from regressions of the inputs to the Economic Sufficiency Index at
age 40 on an indicator for participation in Head Start together with control variables described in the
text. Estimates are weighted to be representative of 1995 population; see text for details. Standard
errors are clustered at 1968 family id in column 1 and on mother id level otherwise. * p < .10, ** p <
.05, *** p < .01. Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table A.18: Effect of Head Start on Inputs to Good Health Index at age 30 (PSID)

All Sibs Mom FE Blk, FE Wht, FE

Fraction of last 5 yrs smoked less than 1 cigarette/day, age 30

Head Start -0.064∗ -0.031 0.021 -0.127∗ 0.049
(0.035) (0.039) (0.080) (0.072) (0.110)

Other preschool -0.017 0.017 -0.011 -0.181∗∗ 0.012
(0.021) (0.024) (0.052) (0.091) (0.056)

Mean Y 0.745 0.755 0.755 0.785 0.750
Observations 2267 1742 1174 376 796

Fraction of last 5 yrs reported good or better health, age 30

Head Start -0.001 0.001 0.042 0.047 0.039
(0.012) (0.013) (0.031) (0.034) (0.052)

Other preschool 0.008 0.004 0.005 -0.009 0.010
(0.008) (0.010) (0.016) (0.035) (0.017)

Mean Y 0.948 0.950 0.950 0.890 0.959
Observations 3763 2806 2292 829 1459

Negative Mean BMI in last 5 years, age 30

Head Start -1.063∗∗ -0.982∗ -0.485 1.408 -1.514
(0.436) (0.506) (0.765) (0.984) (1.128)

Other preschool 0.046 -0.096 -0.332 -0.357 -0.202
(0.266) (0.313) (0.441) (1.069) (0.472)

Mean Y -26.569 -26.615 -26.615 -28.826 -26.267
Observations 3248 2528 1978 689 1286

Notes: This table shows estimates from regressions of the inputs to the Good Health Index at age 30
on an indicator for participation in Head Start together with control variables described in the text.
Estimates are weighted to be representative of 1995 population; see text for details. Standard errors are
clustered at 1968 family id in column 1 and on mother id level otherwise. * p < .10, ** p < .05, *** p
< .01. Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table A.19: Effect of Head Start on Inputs to Good Health Index at age 40 (PSID)

All Sibs Mom FE Blk, FE Wht, FE

Fraction of last 5 yrs smoked less than 1 cigarette/day, age 40

Head Start -0.022 0.013 0.002 0.074 0.099
(0.047) (0.050) (0.075) (0.077) (0.148)

Other preschool 0.003 0.041 -0.033 0.218∗∗ -0.104
(0.039) (0.047) (0.126) (0.097) (0.150)

Mean Y 0.738 0.728 0.728 0.713 0.731
Observations 1280 930 698 300 398

Fraction of last 5 yrs reported good or better health, age 40

Head Start 0.010 0.008 0.013 0.021 0.002
(0.034) (0.039) (0.059) (0.061) (0.144)

Other preschool 0.016 0.010 0.026 0.026 0.025
(0.029) (0.035) (0.023) (0.065) (0.023)

Mean Y 0.919 0.922 0.922 0.871 0.930
Observations 1463 1116 884 398 486

Negative Mean BMI in last 5 years, age 40

Head Start -1.218∗∗ -1.297∗ -0.976 -0.475 0.501
(0.613) (0.731) (0.867) (1.055) (1.251)

Other preschool -0.330 -0.741 -1.861∗∗∗ 1.271 -2.360∗∗∗

(0.424) (0.518) (0.647) (1.503) (0.693)

Mean Y -27.504 -27.433 -27.433 -29.491 -27.095
Observations 2037 1486 1116 413 703

Notes: This table shows estimates from regressions of the inputs to the Good Health Index at age 40
on an indicator for participation in Head Start together with control variables described in the text.
Estimates are weighted to be representative of 1995 population; see text for details. Standard errors are
clustered at 1968 family id in column 1 and on mother id level otherwise. * p < .10, ** p < .05, *** p
< .01. Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table A.20: Impact of Head Start on High School, College, Earnings, and Criminal Behavior (PSID)

All Sibs Mom FE Blk, FE Wht, FE

A. Completed High School

Head Start 0.007 -0.002 -0.011 -0.024 -0.015
(0.018) (0.021) (0.026) (0.031) (0.045)

Other preschool -0.002 -0.008 0.036∗ -0.012 0.046∗

(0.011) (0.014) (0.021) (0.048) (0.024)

R-Squared 0.098 0.105 0.028 0.050 0.038
Observations 7372 5361 5361 2369 2986

B. Completed Some College

Head Start 0.038 0.039 0.046 -0.016 0.120∗∗

(0.024) (0.029) (0.033) (0.036) (0.053)
Other preschool 0.068∗∗∗ 0.069∗∗∗ 0.034 -0.011 0.043

(0.019) (0.023) (0.039) (0.046) (0.047)

R-Squared 0.213 0.233 0.050 0.056 0.057
Observations 7372 5361 5361 2369 2986

C. Ln Earnings 23-25

Head Start 0.040 0.032 0.064 0.057 0.113
(0.056) (0.066) (0.109) (0.142) (0.158)

Other preschool 0.064 0.035 0.084 0.174 0.070
(0.045) (0.052) (0.098) (0.173) (0.110)

R-Squared 0.151 0.161 0.131 0.095 0.152
Observations 4351 3309 2726 986 1736

D. Not Booked/Charged with Crime

Head Start -0.007 -0.012 -0.008 0.028 -0.068
(0.025) (0.031) (0.033) (0.028) (0.064)

Other preschool -0.006 0.007 -0.002 -0.022 0.002
(0.014) (0.017) (0.033) (0.036) (0.039)

R-Squared 0.055 0.062 0.089 0.074 0.106
Observations 5005 3591 3206 1366 1836

Notes: This table shows estimates from regressions of high school graduation (panel A), some college
attainment (panel B), ln earnings between ages 23 and 25 (panel C) and not being charged with a crime
(panel D) on an indicator for participation in Head Start together with control variables described in the
text. Among the 7,372 individuals in the sample, 1098 individuals are in families that have variation in
the Head Start variable (347 families), among those for whom we observe completed education; 887 black
(277 black families), and 211 white individuals (70 white families). Crime sample limited to individuals
age ≥ 16 at the time of interview in 1995. Estimates are weighted to be representative of 1995 population;
see text for details. Standard errors are clustered at 1968 family id in column 1 and on mother id level
otherwise. * p < .10, ** p < .05, *** p < .01. Source: Panel Study of Income Dynamics, 1968-2011
waves.
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Table A.21: Impact of Head Start on Main Outcomes by Sex

Black White

Female Male Female Male

High School

Head Start x Sex 0.008 -0.062 0.005 -0.043
(0.033) (0.042) (0.059) (0.054)

P-value of Difference 0.092 0.497

Some College

Head Start x Sex -0.012 -0.021 0.102 0.145∗∗∗

(0.044) (0.045) (0.074) (0.053)

P-value of Difference 0.873 0.582

Ln Earnings 23-25

Head Start x Sex 0.265 -0.238 0.133 0.078
(0.171) (0.202) (0.217) (0.174)

P-value of Difference 0.037 0.834

No Crime
Head Start x Sex 0.038 0.016 -0.036 -0.112

(0.035) (0.041) (0.073) (0.089)

P-value of Difference 0.661 0.448

Economic Sufficiency Index, age 30

Head Start x Sex -0.052 -0.197∗∗ -0.099 0.078
(0.099) (0.090) (0.112) (0.141)

P-value of Difference 0.148 0.252

Economic Sufficiency Index, age 40

Head Start x Sex -0.021 -0.363∗∗ 0.058 -0.271
(0.173) (0.164) (0.140) (0.184)

P-value of Difference 0.098 0.099

Good Health Index, Age 30

Head Start x Sex 0.042 -0.004 -0.198 -0.361
(0.159) (0.218) (0.278) (0.378)

P-value of Difference 0.838 0.690

Good Health Index, Age 40

Head Start x Sex 0.349 -0.672∗∗ 0.605 -1.099∗∗

(0.273) (0.271) (0.378) (0.480)

P-value of Difference 0.014 0.004

This table shows estimates from regressions of our main outcomes on an indicator for participation in
Head Start interacted with an indicator for being female or male. The estimated interactions between
Head Start and female (male) are shown in columns 1 and 3 (2 and 4). Estimates are weighted to be
representative of 1995 population; see text for details. Standard errors are clustered at 1968 family id
in column 1 and on mother id level otherwise. * p < .10, ** p < .05, *** p < .01. Source: Panel Study
of Income Dynamics, 1968-2011 waves.
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Table A.22: Regression: Interaction with Cohort (Linear) (PSID)

All Sibs Mom FE Blk, FE Wht, FE

Economic Sufficiency Index, age 30

Head Start -0.054 -0.033 -0.038 -0.081 0.094
(0.066) (0.073) (0.086) (0.104) (0.153)

Head Start x trend -0.010∗∗ -0.010∗ -0.009 -0.007 -0.017
(0.005) (0.006) (0.007) (0.008) (0.013)

Mean Y 0.094 0.096 0.096 -0.552 0.213
Observations 7372 5361 5361 2369 2986

Economic Sufficiency Index, age 40

Head Start -0.042 -0.038 -0.030 -0.155 -0.026
(0.084) (0.093) (0.104) (0.136) (0.118)

Head Start x trend -0.014 -0.015 -0.031∗ -0.050∗∗ -0.029
(0.012) (0.013) (0.017) (0.025) (0.019)

Mean Y 0.020 0.025 0.025 -0.670 0.142
Observations 4085 2845 2503 1065 1435

Good Health Index, Age 30

Head Start -0.318∗∗∗ -0.291∗∗∗ -0.113 -0.087 0.018
(0.064) (0.065) (0.161) (0.167) (0.293)

Head Start x trend -0.004 -0.004 -0.007 0.034∗∗ -0.044
(0.007) (0.007) (0.019) (0.017) (0.034)

Mean Y 0.004 0.017 0.017 -0.357 0.074
Observations 4749 3600 3114 1150 1959

Good Health Index, Age 40

Head Start -0.135 -0.110 -0.129 0.066 0.422
(0.149) (0.167) (0.210) (0.188) (0.513)

Head Start x trend -0.028 -0.034 -0.026 0.067 -0.186∗∗

(0.024) (0.026) (0.037) (0.044) (0.083)

Mean Y 0.011 0.015 0.015 -0.290 0.062
Observations 2228 1673 1306 511 795

Notes: This table shows estimates from regressions of the Economic Sufficiency and Good Health Indices
on an indicator participation in Head Start interacted with a normed linear trend in year of birth (year
of birth minus 1966, where 1966 represents the first year that Head Start was available). Estimates are
weighted to be representative of 1995 population; see text for details. Standard errors are clustered at
1968 family id in column 1 and on mother id level otherwise. * p < .10, ** p < .05, *** p < .01. Source:
Panel Study of Income Dynamics, 1968-2011 waves.
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B Appendix: Replication of GTC (2002)

B.1 Summary

In this appendix we describe the results of our replication of Garces, Thomas and Currie (2002)

(GTC). We describe our replication methods is in the Section B.2.

Table B.1 below shows the summary statistics corresponding to Table 1 of GTC for our sample.

We include GTC Table 1 for comparison as Table B.2. In general, the results across the two

tables are similar, albeit not identical. The most notable difference is that we find a lower share

of respondents participate in Head Start, although the difference is smaller for the sibling sample.

The shares of respondents who graduate high school and college are higher in our sample than in

GTC. We report average earnings from age 23-25 in nominal terms as well as adjusted to 1999

dollars. Our adjusted earnings are consistently higher than GTC’s reported adjusted earnings, but

our unadjusted earnings are quite close to their mean adjusted earnings. We suspect that GTC

may have reported unadjusted earnings, although it is also possible that the discrepancy is due

to a slightly larger sample of individuals with earnings in GTC’s sample. Again, the number of

observations we report in the final row of the table is based on the number of individuals responding

to the Head Start participation question.

Our replication of the main regression results in GTC are shown in Table B.3. We include GTC’s

Table 2 as Table B.4 for comparison. Our regression results are qualitatively similar, especially

for the larger samples (panels A, B, and C). GTC found few statistically significant results, one of

which was a negative effect of Head Start on high school completion before including controls. We,

too, find this negative and significant result, though ours is slightly smaller. The result in Column

(6), which GTC find to be positive and significant, we do not find to be significant. Our results

for the college outcomes are aligned with the findings in GTC. The magnitudes that we report are

not statistically different than GTC and in particular we replicate the key finding that Head Start

influences college going for white children and not for black children. Our replication of Panel C

is qualitatively similar to GTC. We do not find a statistically significant decrease in black crime

rates as GTC do, although our point estimates are consistently negative for blacks. Otherwise, our

estimates are quite imprecise and not statistically different than GTC’s.

Our earnings results (panel C replication) are quite different than GTC, but this may be due to

differences in how we defined earnings rather than differences in our samples. This is apparent in

the fact that we have many fewer observations than GTC beginning from column 2 onward, about

24% smaller in column 2 and 48% smaller in column 8.

B.2 Replication Methodology

This section documents the process of replicating Garces, Thomas and Currie (2002) (GTC) for

future scholars wishing to repeat our steps. We describe three stages of the replication: construction

of the dataset, iterations to identify the likely variable definitions, and our final decisions based on
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these iterations. We also include information about the mechanics of downloading the data and

the variables we use.

B.2.1 Construction of Dataset

We begin by assembling data from the Panel Study of Income Dynamics (PSID), a nationally

representative longitudinal dataset that forms the basis for the analysis in GTC. The PSID consists

of the survey responses of household heads and their wives, which compose the annual household-

level datasets (“family files”), as well as a smaller database of responses of all individuals in the

household to a small set of questions (“cross-year individual files”). We merge the family files to

the cross-year individual files using the “case id” number, which is present both on the individual

and family files. We also merge responses of an individual’s mother and father from the crossyear

file for those individuals whose mother or father have been identified in the PSID crossyear file.

The result is a dataset with 71,285 individual observations, each of which contains the personal

responses of an individual over time, the responses (usually given by the head of household) to the

family interview questions for each year, and the responses of an individual’s parents to the cross-

year survey. The base dataset includes the Survey of Economic Opportunity “poverty oversample”

and the Latino oversample, two populations specifically targeted by the PSID in order to improve

the representativeness of the survey. We proceed by excluding the Latino oversample in accordance

with GTC’s footnote 4.

Next, we construct the variables needed to define our sample. GTC delineate the specifications

for their sample throughout the paper, and in particular we rely on their descriptions in Section II

and footnote 7. A key stratifying variable in GTC is race, which is also a limiting factor for the

sample size since the GTC sample is restricted to only black and white individuals (see footnote

4 of GTC). Unfortunately, the PSID does not assign a race to each individual, so race must be

imputed from the annual family responses about race. Specifically, the PSID surveys families about

the race of the head and wife of the head of household, so an individual’s race can only be identified

if that individual becomes a head of household or his wife. Otherwise we must infer the race of the

individual through their relation to the head of household or his wife.

The process of identifying race from the responses of other family members can be done at any

age and from a variety of different family members, so we have experimented with using more and

less restrictive definitions. We establish five definitions of race based on the relations through which

we allow inference and the survey years over which we make the inference. These definitions are

summarized over those two dimensions below in Table B.5.

The second limiting criterion is the age of individuals. GTC include respondents aged 18 and

over in 1995, which results in a sample of respondents born between 1965 and 1977. They exclude

the 1964 and 1965 cohorts. Since this sample restriction can be defined and replicated in a few

different ways with PSID variables, we develop three candidate limitations on age and year of birth

for individuals in our sample. We describe the criteria which define these alternative candidates in
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Table B.6.

The third criterion is to identify sets of siblings within the remaining sample that comprise

the “siblings subsample.” Since the identification strategy relies on the inclusion of a mother fixed

effect, we define siblings as any two individuals who satisfy the race and age criteria for the sample

and have the same unique mother identification number. The mother identification number is

a combination of a family identifier and a personal identifying number which is assigned by the

PSID. Individuals that do not have a mother identification number are excluded from the sibling

subsample.

Next, we flag observations from the SEO poverty oversample with the intention of excluding

them as GTC do. We ultimately do not exclude these observations because comparisons of the

sample statistics with and without the SEO sample make us speculate that the results in GTC

were generated from a sample that included the SEO sample.

We construct sample weights using CPS weights to make the sample representative of the 1995

white and African-American populations. Specifically, we collapsed the 1995 CPS weights to age-

race-sex cells (year of birth is not available) and merge the cell weight onto each observation of our

sample. Then, we divide the cell weight by the number of individuals in that age-race-sex cell who

are in our sample and the resulting individual weight is what we use for our analysis.

B.2.2 Search for identical dataset construction

As mentioned previously, the sample construction criteria are clearly documented in GTC. For

some dimensions, we could think of a few ways to define variables and samples in accordance with

their descriptions. Therefore, we conducted tests to determine the procedures that would yield a

dataset consistent with GTC, as well as to assess the stability of the results.

Our search iterations hinge on four parameters: inclusion or exclusion of the SEO oversample;

the algorithm for identifying an individual’s race; the criteria for age; and the order in which we

dropped observations and weighted the sample. For this last parameter, we weighted the sample

before dropping the Latino oversample as well as after. We do not present the results for the

variations on this final parameter because the exercise clearly indicated that dropping the Latino

oversample best matched GTC’s results regardless of how the first three parameters were defined.

Table B.7 below shows the results of our iteration of the summary statistics results for a select

set of variables. Our goal was to match the results to Table 1 in GTC, reproduced on the first row

of the table. The number of observations we report is for the variable for Head Start participation,

although some variables have fewer observations. For example, over half the observations for the

income variable are missing. GTC also report one N for each column, although they also likely had

fewer observations for variables like income.

Our sample is weighted based on race, gender, and age variables from the CPS, so we expect

that the mean values for the weighted PSID sample should be similar to the CPS means. We

include the CPS means for the three variables as a comparison. The definitions for age and race
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are as described in the previous section. There are a number of conclusions we draw from this table.

First, we speculate that the 25.17 percent black reported in GTC is, in fact, 15.17 percent, which

is much closer to the CPS means. Second, inclusion of the SEO oversample adds approximately

1,500 observations to our sample and brings us quite close to the size of the sample and sample

means reported in GTC.

As we had hoped, moving from iteration to iteration substantially changes the number of ob-

servations, which suggest which decisions produced the sample of GTC. For example, holding SEO

and age definitions constant, moving from our conservative definition of race (2) to the liberal

definition (4) adds approximately 30 to 50 observations, an approximately 1.5 percent increase in

sample size. The specification of age is also important for defining the sample size. For example,

the movement from row 1, 1, 2 (N=3,286) to 1, 2, 2 (N=3,548) is an eight percent increase, and

the subsequent movement to row 1, 3, 2 (N=4,187) is an 18 percent increase.

Despite the variability in sample size, our sample characteristics are not sensitive to the decisions

along each of these dimensions. Additionally, while our results for these select variables are at times

statistically different than those of GTC, we remain close to the magnitudes that they report.

The race, gender, and age means are very similar across the specifications, likely on account of

the weighting. The preschool participation and high school graduation rates are nearly identical

throughout, especially when we include the SEO oversample. The exception to this pattern is

Head Start participation. The SEO oversample increases the share of respondents who were in

Head Start to close to nine percent, which is still lower than the 10.57 percent reported in GTC.

We were unable to replicate this high incidence of Head Start participation throughout the iteration

process, including in iterations not reported here.

We also performed iterations on the regression models from GTC’s Table 2. GTC conduct a

similar regression for each of four outcome variables: high school graduation, college graduation,

crime, and later earnings. The first of these three are fairly similar: they are defined by one variable

in the PSID. In this comparison table we only show results for high school graduation. On the other

hand, compiling a consistent variable for earnings is trickier. Here we present results for one of our

regressions, but in general we were not able to replicate the findings for this outcome variable.

There are eight different models in GTC. The first three are on the full sample, the sibling

sample, and the sibling sample with controls. The next five models use mother fixed effects: first

on the full sample, then the full sample split by whether the mother was white or black, and finally

for the subset of mothers with less than a high school education, also split by race.

Table B.8 shows a comparison of the results. We show iterations on the same three age restric-

tions as above, as well as race definitions for definitions 4 and 5 as defined in the previous section.

For each regression the corresponding result from GTC is shown on the first row.

Our regression results are qualitatively similar, especially for the larger samples (panel A). GTC

found few statistically significant results, one of which was a negative effect of Head Start on high

school completion (result A.1). We, too, replicate this negative and significant result, though ours

71



are smaller. As can be noted in result A.4, our models using later earnings were similar to those

in the paper. The result in B.4, which GTC find to be positive and significant, we do not find

significant. However, all of our replications of this result fall within the confidence interval they

use.

Among our various iterations, the results are stable. Only the result in A.1 has a difference of

one standard error between estimates, with the rest of these results never straying more than half

a standard error from each other.

B.3 Final dataset restrictions

Given our iteration exercises, our preferred sample definition includes the SEO poverty over-

sample, uses age definition 1 and uses race definition 5 as explained in the first section of this

appendix. Our choice of age and race definitions is appropriate for three reasons. First, they repli-

cate the GTC adequately. Second, they are a reasonable method for a researcher not attempting to

replicate findings. Third, they result in large samples, which is important for additional analyses.

B.4 More on the data

We downloaded the data files from http://simba.isr.umich.edu/Zips/ZipMain.aspx. Table

B.9 shows the variables we downloaded.
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Table B.1: Replication of Garces, Thomas, Currie (2002) Summary Statistics

All Head Start No Head Start Sibling Sample

Head Start 0.0873 1 0 0.103
(.282) (0) (0) (.304)

Other preschool 0.266 0 0.291 0.281
(.442) (0) (.454) (.45)

Fraction completed hs 0.851 0.752 0.860 0.854
(.356) (.432) (.347) (.353)

Fraction attended some college 0.468 0.339 0.481 0.482
(.499) (.474) (.5) (.5)

Avg. Earnings age 23-25 18543.5 13361.3 18962.7 20116.3
(14929) (12057) (15062) (17141)

Avg. Earnings age 23-25 (CPI adjusted) 20367.9 14730.7 20823.9 21734.8
(15646) (12950) (15758) (17521)

Fraction booked/charged with crime 0.0998 0.124 0.0975 0.106
(.3) (.33) (.297) (.308)

Fraction African-American 0.150 0.619 0.105 0.162
(.357) (.486) (.307) (.369)

Fraction female 0.502 0.533 0.499 0.475
(.5) (.499) (.5) (.5)

Age in 1995 23.67 23.14 23.72 23.14
(3.44) (3.5) (3.43) (3.28)

Fraction eldest child in family 0.345 0.335 0.346 0.364
(.475) (.472) (.476) (.481)

Fraction low birth weight 0.0608 0.110 0.0553 0.0560
(.239) (.314) (.229) (.23)

Mother’s yrs education 11.36 10.00 11.49 11.17
(2.58) (2.44) (2.56) (2.54)

Fraction whose mother completed hs 0.772 0.585 0.790 0.770
(.419) (.493) (.407) (.421)

Father’s yrs education 11.46 9.806 11.60 11.37
(3.01) (2.78) (2.98) (3)

Fraction whose father completed hs 0.725 0.475 0.747 0.717
(.446) (.5) (.435) (.451)

Family income (age 3-6) (CPI adjusted) 48040.3 30253.9 49699.4 48580.8
(27470) (15498) (27756) (29193)

Had a single mother at age 4 0.119 0.320 0.0998 0.108
(.324) (.467) (.3) (.31)

Household size at age 4 4.659 5.109 4.616 4.831
(1.81) (2.18) (1.76) (1.71)

Observations 3399 552 2847 1541

Notes: Weighted to be representative of 1995 population; see text for details.
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Table B.2: GTC Table 1: Summary Statistics

All sample Head Start Not in Head Start Sibling Sample

Head Start 0.1057 1 0 0.1089
(.0053) (0) (0) (.0073)

Other preschool 0.2834 0.1333 0.3011 0.2771
(.0077) (.0151) (.0085) (.0105)

Pct. completed hs 0.7660 0.6465 0.7803 0.7721
(.0074) (.0216) (.0079) (.0101)

Pct. attended some college 0.3714 0.2508 0.3859 0.3880
(.0085) (.0196) (.0093) (.0117)

Average earnings between age 23-25 - - - -
- - - -

Average earnings between age 23-25 - CPI adjusted 17290 12100 17810 17310
(690) (670) (760) (1000)

Pct. booked/charged with crime 0.0969 0.1104 0.0953 0.1004
(.0051) (.00139) (.0054) (.0070)

Pct. African-American 0.2517 0.7532 0.1924 0.2285
(.0074) (.00192) (.0078) (.0098)

Pct. female 0.5149 0.5641 0.5091 0.5075
(.0085) (.0220) (.0093) (.0117)

Age in 1995 23.66 23.35 23.70 23.65
(.06) (.15) (.06) (.08)

Pct. eldest child in family 0.5311 0.5089 0.5337 0.5057
(.0056) (.0141) (.0061) (.0076)

Pct. low birth weight 0.0699 0.1040 0.0659 0.0669
(.0037) (.0124) (.0038) (.0056)

Mother’s yrs education 12.14 11.33 12.24 12.30
(.04) (.09) (.04) (.05)

Pct. whose mother completed hs 0.7037 0.5552 0.7212 0.7815
(.0078) (.0221) (.0083) (.0097)

Father’s yrs education 11.60 10.19 11.76 12.23
(.06) (.14) (.06) (.07)

Pct. whose father completed hs 0.5612 0.2638 0.5964 0.6330
(.0085) (.0196) (.0091) (.0113)

Family income (age 3-6) - CPI adjusted 46230 26620 48540 47330
(460) (580) (500) (670)

Had a single mother at age 4 0.1642 0.4035 0.1359 0.1306
(.0061) (.0216) (.0061) (.0079)

Household size at age 4 4.59 4.97 4.55 4.84
(.03) (.09) (.03) (.04)

Observations 3255 489 2766 1742
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Table B.3: Replication of Garces, Thomas, Currie (2002) Regressions

All Sibs Controls Mom FE Blk, FE Wht, FE

Panel A. High School

Head Start -0.064∗ -0.017 0.009 0.031 -0.017 0.093
(0.034) (0.043) (0.040) (0.057) (0.063) (0.092)

Other Preschool 0.082∗∗∗ 0.076∗∗∗ 0.014 0.028 0.068 0.021
(0.013) (0.022) (0.021) (0.035) (0.072) (0.038)

Observations 3399 1541 1541 1541 615 923

Panel B. College

Head Start -0.027 -0.021 0.033 0.100∗ -0.039 0.232∗∗

(0.035) (0.053) (0.045) (0.059) (0.059) (0.094)
Other Preschool 0.200∗∗∗ 0.219∗∗∗ 0.098∗∗∗ 0.047 -0.062 0.059

(0.025) (0.034) (0.033) (0.044) (0.101) (0.049)

Observations 3399 1541 1541 1541 615 923

Panel C. Earnings

Head Start -0.139∗ -0.142 -0.056 -0.041 0.427∗ -0.322
(0.074) (0.108) (0.113) (0.191) (0.245) (0.261)

Other Preschool 0.067 -0.023 -0.125∗ -0.013 0.286 -0.017
(0.062) (0.072) (0.074) (0.116) (0.448) (0.118)

Observations 2118 972 972 779 236 541

Panel D. No Crime
Head Start -0.028 0.069 -0.055 -0.086 0.065 -0.222∗

(0.028) (0.050) (0.049) (0.070) (0.044) (0.125)
Other Preschool -0.000 -0.020 0.004 -0.046 0.059 -0.059

(0.015) (0.019) (0.020) (0.038) (0.052) (0.043)

Observations 3387 1537 1537 1535 614 918

Notes: * p < .10, ** p < .05, *** p < .01. Weighted to be representative of 1995 population; see text for details. SE
clustered at 1968 family id in column 1 and at mother id level otherwise.
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Table B.4: GTC Table 2: Regressions

(1) (2) (3) (4) (5) (6) (7) (8)
All Sibs Controls Mom FE Blk, FE Wht, FE Blk, l.e. HS Wht, l.e. HS

Completed high School

Head Start -0.089 -0.075 0.006 0.037 -0.025 0.203 0.000 0.283
(0.026) (0.035) (0.034) (0.053) (.065) (0.098) (0.071) (0.119)

Other Preschool 0.085 0.073 0.003 -0.032 -0.056 -0.014 -0.080 -0.019
(0.016) (0.022) (0.021) (0.038) (0.064) (0.048) (0.077) (0.067)

Difference -0.174 -0.148 0.003 0.069 0.031 0.217 0.081 0.302
S.E Difference 0.028 0.037 0.039 0.062 0.085 0.105 0.097 0.126
N 3255 1742 1742 1742 706 1036 554 677

Attended Some College

Head Start -0.038 -0.016 0.075 0.092 0.023 0.281 0.031 0.276
(0.023) (0.033) (0.033) (0.056) (.066) (0.108) (0.067) (0.120)

Other Preschool 0.142 0.149 0.023 0.050 -0.007 0.095 0.022 0.0103
(0.019) (0.027) (0.026) (0.040) (0.064) (0.052) (0.072) (0.068)

Difference -0.180 -0.165 0.052 0.042 0.030 0.186 0.009 0.173
S.E Difference 0.028 0.040 0.041 0.065 0.085 0.115 0.092 0.127
N 3255 1742 1742 1742 706 1036 554 677

ln(earnings 23-25)

Head Start -0.034 0.053 0.170 0.194 0.073 0.566 0.051 1.004
(0.090) (0.116) (0.117) (0.257) (0.321) (0.459) (0.357) (0.516)

Other Preschool 0.173 0.174 0.002 0.079 -0.087 0.146 0.124 0.136
(0.063) (0.086) (0.082) (0.171) (0.287) (0.219) (0.341) (0.306)

Difference -0.207 -0.122 0.167 0.115 0.160 0.420 -0.073 0.868
S.E Difference 0.104 0.138 0.144 0.302 0.420 0.504 0.482 0.548
N 1383 728 728 728 272 456 216 320

Booked or charged with crime

Head Start 0.023 0.041 0.012 -0.053 -0.116 0.122 -0.126 0.058
(0.018) (0.026) (0.026) (0.039) (0.045) (0.077) (0.050) (0.095)

Other Preschool -0.017 - 0.022 -0.001 0.032 0.000 0.063 -0.023 0.147
(0.011) (0.016) (0.017) (0.028) (0.045) (0.036) (0.056) (0.054)

Difference 0.040 0.063 0.013 -0.085 -0.117 0.059 -0.103 -0.089
S.E Difference 0.020 0.028 0.030 0.045 0.059 0.082 0.070 0.100
N 3255 1742 1742 1742 706 1036 554 677

SE in parentheses.
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Table B.5: Alternative Definitions of Race

Defn. Survey Years Relation to Head (or Wife)

1995 1985-1996 Head Wife Child Parent Sibling
1 X X X X
2 X X X X X X
3 X X X X
4 X X X X X X
5 X X X X X X

Table B.6: Candidate limitations on birth year and age

Defn. BirthYears Age in 1995

1966-1977 Not 1965, 1978 No Restriction >18 17-29 17-30
1 X X
2 X X
3 X X

Table B.7: Iterations for Summary Statistics Table

Black Female Age Head Start Preschool High School N

GTC(2002) 0.252 0.515 23.660 0.106 0.283 0.766 3255
CPS 1995 0.150 0.505 23.686

Sample Iterations
SEO Age Race

0 1 2 0.149 0.497 22.952 0.078 0.302 0.822 1708
0 1 4 0.149 0.497 22.950 0.079 0.299 0.820 1735
0 2 2 0.154 0.499 22.859 0.079 0.309 0.811 1855
0 2 4 0.154 0.499 22.857 0.080 0.306 0.809 1883
0 3 2 0.150 0.503 23.713 0.076 0.286 0.820 2173
0 3 4 0.150 0.503 23.712 0.076 0.284 0.818 2204
1 1 2 0.153 0.498 22.959 0.089 0.290 0.788 3286
1 1 4 0.153 0.498 22.958 0.089 0.288 0.787 3333
1 2 2 0.157 0.500 22.926 0.087 0.292 0.782 3548
1 2 4 0.157 0.500 22.925 0.087 0.290 0.781 3597
1 3 2 0.150 0.503 23.710 0.082 0.276 0.788 4187
1 3 4 0.120 0.503 23.710 0.082 0.274 0.787 4244

Notes: First row corresponds to selections from Garces, Thomas and Currie (2002) table 1. Second row corre-
sponds to 1995 CPS means, as described in the text of the appendix. The next 12 columns correspond to sample
iterations on three criteria. The first is the inclusion (SEO=1) or exclusion (SEO=0) of the Survey of Economic
Opportunity sample. The three age criteria and two race criteria are explained in detail in the previous table.
Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table B.8: Iterations for Regressions Table

Panel A.
HS, All HS, Sib HS, Mom FE Log Earnings, All

b se N b se N b se N b se N

GTC (2002) -0.089 (0.026) 3255 -0.075 (0.035) 1742 0.037 (0.053) 1742 -0.034 (0.090) 1383

Sample Iterations
Age Race
1 4 -0.075 (0.030) 3315 -0.035 (0.043) 1543 0.047 (0.075) 1543 -0.064 (0.106) 894
1 5 -0.071 (0.030) 3344 -0.025 (0.042) 1565 0.047 (0.075) 1565 -0.067 (0.105) 898
2 4 -0.073 (0.030) 3585 -0.034 (0.039) 1731 0.072 (0.077) 1731 -0.064 (0.104) 894
2 5 -0.067 (0.031) 3616 -0.024 (0.039) 1753 0.072 (0.076) 1753 -0.067 (0.104) 898
3 4 -0.052 (0.026) 4233 -0.046 (0.035) 2125 0.037 (0.063) 2125 -0.043 (0.092) 1132
3 5 -0.046 (0.027) 4264 -0.036 (0.035) 2147 0.036 (0.062) 2147 -0.046 (0.092) 1136

Panel B.
HS, Mom FE, Black HS, Mom FE, White HS, Mom<HS, Black HS, Mom<HS, White

b se N b se N b se N b se N
GTC (2002) -0.025 (0.065) 706 0.203 (0.098) 1036 0 (0.071) 554 0.283 (0.119) 677

Sample Iterations
Age Race
1 4 -0.030 (0.058) 625 0.133 (0.089) 898 -0.026 (0.058) 586 0.152 (0.099) 672
1 5 -0.030 (0.058) 625 0.133 (0.088) 920 -0.026 (0.058) 586 0.152 (0.098) 692
2 4 -0.028 (0.056) 702 0.181 (0.094) 1008 -0.025 (0.056) 649 0.203 (0.105) 759
2 5 -0.028 (0.056) 702 0.181 (0.092) 1030 -0.025 (0.056) 649 0.202 (0.104) 779
3 4 -0.043 (0.044) 858 0.120 (0.081) 1241 -0.045 (0.044) 797 0.136 (0.092) 961
3 5 -0.043 (0.044) 858 0.114 (0.079) 1263 -0.045 (0.044) 797 0.130 (0.088) 981

Notes: First row of each panel corresponds to selections from Garces, Thomas and Currie (2002) table 2. The three age
criteria and two race criteria are explained in detail in the previous table. Source: Panel Study of Income Dynamics,
1968-2011 waves.
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Table B.9: PSID Variables used in the analysis

Our Variable PSID Original Variable Description (derived
variable)

Source

id1968 ER30001 Family identifier Indiv. Cross year

pernum ER30002 Personal identifier Indiv. Cross year

relation1968-
relation2001

ER30003, ER30022, ER30045, ER30069,
ER30093, ER30119, ER30140, ER30162
ER30190, ER30219, ER30248 ER30285,
ER30315, ER30345, ER30375, ER30401,
ER30431, ER30465, ER30500, ER30537,
ER30572, ER30608, ER30644 ER30691,
ER30735, ER30808, ER33103, ER33203,
ER33303, ER33403, ER33503, ER33603

Relation to head Indiv. Cross year

caseid1968-
caseid2011

ER30020 ER30043 ER30067 ER30091
ER30117 ER30138 ER30160 ER30188
ER30217 ER30246 ER30283 ER30313
ER30343 ER30373 ER30399 ER30429
ER30463 ER30498 ER30535 ER30570
ER30606 ER30642 ER30689 ER30733
ER30806 ER33101 ER33201 ER33301
ER33401 ER33501 ER33601 ER33701
ER33801 ER33901 ER34001 ER34101
ER33601

Fam. Intervew Num-
ber

Indiv. Cross year

edu1968-
edu2011

ER30010 ER30052 ER30076 ER30100
ER30126 ER30147 ER30169 ER30197
ER30226 ER30255 ER30296 ER30326
ER30356 ER30384 ER30413 ER30443
ER30478 ER30513 ER30549 ER30584
ER30620 ER30657 ER30703 ER30748
ER30820 ER33115 ER33215 ER33315
ER33415 ER33516 ER33616 ER33716
ER33817 ER33917 ER34020 ER34119

Yrs. Education Indiv. Cross year

age1995 ER33204 Age in 1995 Indiv. Cross year

birthyr1995 ER33206 Birthyear in 1995 Indiv. Cross year

headstart1995 ER33261 Head Start Response
in 1995

Indiv. Cross year

preschool1995 ER33264 Preschool Response
in 1995

Indiv. Cross year

preschool1995 ER33266 Crime Response in
1995

Indiv. Cross year

sex ER32000 Sex Indiv. Cross year

momid1968 ER32009 Mother’s Family ID Indiv. Cross year

mompernum ER32010 Mother’s Personal
ID

Indiv. Cross year

dadid1968 ER32016 Father’s Family ID Indiv. Cross year

dadpernum ER32017 Father’s Personal ID Indiv. Cross year

birthweight ER32014 Birth weight Indiv. Cross year
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Our Variable PSID Original Variable Description (derived
variable)

Source

crime1995 ER33266 Committed/Charged
with Crime

Indiv. Cross year

parityofmom ER32013 Parity of mom (El-
dest)

Indiv. Cross year

h edu1968-
h edu2011

V313 V794 V1485 V2197 V2823 V3241
V3663 V4198 V5074 V5647 V6194 V6787
V7433 V8085 V8709 V9395 V11042
V12400 V13640 V14687 V16161 V17545
V18898 V20198 V21504 V23333 ER4158
ER6998 ER9249 ER12222 ER16516
ER20457 ER24148 ER28047 ER41037
ER46981 ER52405

Education of Head
(Mom, Dad Educa-
tion)

Family Interviews

w edu1968,
w edu1972-
w edu2011

V246 V2687 V3216 V3638 V4199 V5075
V5648 V6195 V6788 V7434 V8086
V8710 V9396 V11043 V12401 V13641
V14688 V16162 V17546 V18899 V20199
V21505 V23334 ER4159 ER6999 ER9250
ER12223 ER16517 ER20458 ER24149
ER28048 ER41038 ER46982 ER52406

Education of Wife of
Head (Mom Educa-
tion)

Family Interviews

h sex1968-
h sex2011

V119 V1010 V1240 V1943 V2543 V3096
V3509 V3922 V4437 V5351 V5851 V6463
V7068 V7659 V8353 V8962 V10420
V11607 V13012 V14115 V15131 V16632
V18050 V19350 V20652 V22407 ER2008
ER5007 ER7007 ER10010 ER13011
ER17014 ER21018 ER25018 ER36018
ER42018 ER47318

Sex of Head (Single
mom)

Family Interviews

f tanf1994-
f tanf2011

ER3262 ER6262 ER8379 ER11272
ER14538 ER18697 ER22069 ER26050
ER37068 ER43059 ER48381

Family Received
AFDC/TANF last
year

Family Interviews

f fs1994-
f fs2011

ER3059 ER6058 ER8155 ER11049
ER14255 ER18386 ER21652 ER25654
ER36672 ER42691 ER48007

Family Received
Food Stamps last
year

Family Interviews

h cigs1986,
h cigs1999-
h cigs2011

V13442 ER15544 ER19709 ER23124
ER27099 ER38310 ER44283 ER49621

Cigarettes Per Day
of Head

Family Interviews

w cigs1986,
w cigs1999-
w cigs2011

V13477 ER15652 ER19817 ER23251
ER27222 ER39407 ER45380 ER50739

Cigarettes Per Day
of Wife of Head

Family Interviews

h wlbs1999-
h wlbs2011

ER15552 ER19717 ER23132 ER38320
ER44293 ER49631

Weight of Head
(BMI)

Family Interviews

w wlbs1999-
w wlbs2011

ER15660 ER19825 ER23259 ER27232
ER39417 ER45390 ER50749

Weight of Wife of
Head (BMI)

Family Interviews
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Our Variable PSID Original Variable Description (derived
variable)

Source

h srhealth1984-
h srhealth2011

V10877 V11991 V13417 V14513 V15993
V17390 V18721 V20021 V21321 V23180
ER3853 ER6723 ER8969 ER11723
ER15447 ER19612 ER23009 ER26990
ER38202 ER44175 ER49494

Self-Reported
Health of Head

Family Interviews

w srhealth1984-
w srhealth2011

V10884 V12344 V13452 V14524 V15999
V17396 V18727 V20027 V21328 V23187
ER3858 ER6728 ER8974 ER11727
ER15555 ER19720 ER23136 ER27113
ER39299 ER45272 ER50612

Self Reported Health
of Head of Wife

Family Interviews

f rentown1968-
f rentown2011

V103 V593 V1264 V1967 V2566 V3108
V3522 V3939 V4450 V5364 V5864 V6479
V7084 V7675 V8364 V8974 V10437
V11618 V13023 V14126 V15140 V16641
V18072 V19372 V20672 V22427 ER2032
ER5031 ER7031 ER10035 ER13040
ER17043 ER21042 ER25028 ER36028
ER42029 ER47329

Family Rents/Owns
Home

Family Interviews

h wages1968-
h wages2011

V251 V699 V1191 V1892 V2493 V3046
V3458 V3858 V4373 V5283 V5782 V6391
V6981 V7573 V8265 V8873 V10256
V11397 V12796 V13898 V14913 V16413
V17829 V20178 V21484 V23323 ER4140
ER6980 ER9231 ER12080 ER16463
ER20443 ER24116 ER27931 ER40921
ER46829 ER52237

Earnings of Head Family Interviews

w wages1968-
w wages2011

V76 V516 V1198 V1899 V2500 V3053
V3465 V3865 V4379 V5289 V5788 V6398
V6988 V7580 V8273 V8881 V10263
V11404 V12803 V13905 V14920 V16420
V17836 V19136 V20436 V23324 ER4144
ER6984 ER9235 ER12082 ER16465
ER20447 ER24135 ER27943 ER40933
ER46841 ER52249

Earnings of Wife of
Head

Family Interviews
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C Functional form choices with Binary Treatment and Binary

Outcome

We now consider potential sensitivity to functional form modeling assumptions. For binary

outcomes the usual choice of specifications include linear probability model (LPM), logit, and

probit. In the cross-sectional setting, the conventional wisdom is that the choice among these

options is fairly innocuous, especially when the objective is to recover the ATE.49 We are not aware

of any previous systematic exploration of these properties in extremely short-panel settings such

as found in the FFE design. We demonstrate some complications that arise in such settings, and

compare the performance of these estimators.

C.1 Specification choices

Empiricists commonly use LPM specification to estimate FE models. In our sample of papers,

this is almost universally used as the primary, if not only, specification. We speculate that this is

motivated by (1) the intuition carried over from the cross-sectional case that LPM models usually

recover the ATE; (2) the benefit that the incidental parameters problem does not pollute the main

parameters of interest (Chamberlain, 1980);50 (3) computational ease, especially when paired with

other complications to the research design such as many fixed effects, instrumental variables, etc.);

and (4) the fact that the estimated coefficient βLPM directly gives the estimate of the ATE.

Obtaining ATE from a nonlinear specification is not only less common, but also sometimes

less straightforward. The conditional logit model, sometimes referred to as logit FE, consistently

estimates βLogit by conditioning on the number of successes in a family, but does not have a paired

method for obtaining treatment effects. To obtain ATE, Wooldridge (2010, section 15.8) recom-

mends employing a regular logit model and including family-level-means of control variables, i.e.

“Chamberlain-Mundlak controls,” (hereafter, Mundlak controls) rather than directly controlling

for fixed effects (Mundlak, 1978; Chamberlain, 1980).51

Fernandez-Val (2009) examines the probit FE model. He proposes a bias-correction approach,

which is based on the large-T asymptotic bias resulting from the incidental parameters problem.

He also derives a “small bias” property for uncorrected/naive estimates of marginal effects for the

probit FE model, and demonstrates this for panels of length as short as T=4. However it is not clear

that the results in Fernandez-Val (2009) should apply in the family FE setting. This is because: (1)

49See Angrist and Pischke (2009, pg. 107) and Wooldridge (2010, section 15.6). In contrast, Cameron and
Trivedi (2005, pg. 471) recommend limiting LPM’s to exploratory analysis, and note that it does not do a good
job making predicted probabilities for individual observations. In panel contexts, textbook treatments generally state
that estimates should be fine using LPM (Wooldridge, 2010, pg. 608).

50Because this inconsistency is based on the panel length being fixed, the problem may be especially acute for short
panels.

51The traditional implementation is to model the residual variance as having an i-level random effect, hence the
terminology Correlated Random Effects given to this method. However, it is also possible to include family means
of control variables and then estimate regular pooled logit or probit, as we will do.
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we face extremely short panel lengths due to families commonly having only 2 children52; (2) his

results apply only to the leading (order 1/T) bias term, but with very short panels the subsequent

bias terms could still be relevant; and (3) there is an unresolved challenge of how to address the

extrapolation from the estimation sample to singletons (when they are in the target population).53

Mundlak controls and naive-fixed-effects methods have the attractive properties of: (1) being

easy to implement; (2) respecting the binary functional form of the left-hand-side (LHS) variable;

and (3) straightforwardly obtaining ATEs. Nonetheless, empiricists’ use of either of these options

is uncommon; in our sample of 58 papers discussed in section 2.2 these methods are not used.

An additional complication with conditional or fixed effect logit and probit models is that they

use less variation relative to LPM. With these models, for any families that have no variation in

outcomes, i.e “all successes” or “all failures”, the fixed effect parameters will be driven to +/-

infinity, and these families will be dropped from estimation. This leaves only “double switchers”:

families with variation in both the outcome variable and the treatment variable. This means that

moving from LPM to nonlinear specification is automatically tied to a change in estimation sample,

which can reduce the effective sample size and may exacerbate the issues discussed in Section 3. In

our application for example we see a reduction from 2986 individuals in the overall white "siblings

sample" to 211 individuals in the “RHS switchers" sample to 98 individuals (from only 27 families)

in the double switchers sample. A related issue is that the LPM results will depend on the fraction

of observations in families that are not LHS switchers, whereas the logit model estimates will be

invariant to the number of these non-switchers.

C.2 Obtaining Marginal Effects from Conditional Logit

In order to address the challenge of translating the conditional logit coefficient, βLogit, into ATE

units that can be compared with LPM results, we introduce a “two-step logit” model. The first

step is the usual conditional logit estimator, used to obtain a consistent coefficient β̂ for variables

that change within-family. The second step estimates a random effects logit model (over the full

sample, including non-switchers), while imposing the coefficient on the treatment variable (and on

other individual-level variables) from the first step model. The purposes of the second step are

(1) to estimate coefficients on family-level variables, so as (2) to assign an estimated “logit index"

value to each observation, and (3) to estimate the variance of the family-level random effect σ2
u.

After the second step model is estimated, we then estimate the ATE using:

ATE2StepLogit =
1

N

N∑
i=1

ˆ

u

(β̂HeadStart · Λ(β̂Xif + γ̂Zf + u) · 1− Λ(β̂Xif + γ̂Zf + u)φ(u)du (10)

52We have reproduced the results for mean bias from his Table 4 for Probit and LPM-FS. We then reduced the
panel size to T=2, and we find a detectible bias of -6.4% of the true ATE for the Probit, and no bias for the LPM-FS

53For singletons there is no ability to separately identify the value of the fixed effect from the idosyncratic error
term. This is not a problem when the target population is either RHS switcher or all siblings. For these target
populations, the naive logit FE or probit FE model could be used following the reweighting ideas presented above.
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With β̂HeadStart the coefficient on Head Start from the conditional logit first step; β̂ the coeffi-

cient on i-level variables Xif from the conditional logit first step; γ̂ the coefficients on family-level

variables from the second step; and φ(u) the PDF from a normal distribution, with variance σ2
u

estimated from the second step family-level random effects model. We have not yet found a prior

implementation of this estimator in the literature; but it is similar in spirit to the two step fixed-

effects logit proposed by Beck (2015).54

C.3 Selection in Nonlinear Models

A desirable feature of the two-step logit and the Mundlak controls models is that both allow

the marginal effect of treatment, ∂Pr(Y =1)
∂HeadStart , to vary across individuals. In both cases, the treat-

ment effect depends on the “index value” for each individual. However, the models maintain an

assumption of constant treatment effects in logit units (βLogit). If the model is misspecified, and

instead there are variable treatment effects for different individuals, and that a reweighted estima-

tion sample might produce more reliable results, especially when trying to measure the ATE for

a pre-specified target group. This consideration is analogous to the treatment effect heterogeneity

discussed in section 4.3.

We propose employing the in-regression weights
˜

ssw→tg
f · vf as discussed above in section 4.3.

That is, the weights are a combination of (1) propensity score weights derived from a multinomial

logit model predicting “RHS switcher” status and “in target population” status, and (2) inverse

within-family conditional variance of the treatement variable of interest. For expediency, we con-

tinue to estimate this conditional variance from a linear model, and to apply it directly to the

second stage logit estimation step.

We explore some of these models in the context of our empirical example, and find some dif-

ferences in the point estimates and precision across linear and nonlinear specifications. Compared

with LPM, we find somewhat smaller and less precise impacts of Head Start on some college when

we use the 2-step approach (point estimate: 0.086 (se: 0.059). We note that the slight decrease

in precision here accompanies many fewer observations, which has fallen to 1200 for estimation of

the logit beta instead of 2987 in the LPM.55 The point estimate for the Mundlak controls is very

similar to LPM, 0.126, but the standard errors are 20% larger (se: 0.053), so that the estimate is

significant only at the 10% level.

C.4 Monte Carlo for Nonlinear Specifications

We next consider the bias of the different specifications in the context of a specific data gener-

ating process (DGP).

54Beck’s second step is a logit FE (with dummies) estimator, with the β imposed from the conditional logit first
stage. Then the estimated fixed effects are used to obtain the ATE.

55Note that in the second step, the ATE is calculated over the full population. Another difference is that we
weight the conditional logit regressions using family averages of individual weights, since conditional logit does not
accomodate individual weights.
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For our simulations, we continue with the PSID data setup presented above in Section 4.4.1.

We take the original data, and estimate a logit model predicting some college attainment, using

as regressors family level variables and family-level averages of individual variables. From this

model we construct a family level logit index variable, xf . For each simulation, the underlying logit

index for each individual is equal to xf , plus the Head Start dummy multiplied by the Head Start

(logit) treatment effect. We then turn this index into Pr(y = 1) using the logistic CDF, and then

randomly draw outcomes y. We consider three DGPs. The first of these has a constant treatment

effect (in logit units). The second has a treatment effect that is zero for small families (with 2 or

3 children), and a larger treatment effect for families with 4 or more children. The third DGP has

a variable treatment effect which is decreasing linearly in xf . For all of the DGPs, the treatment

effect in terms of Pr (y = 1) will vary across target populations because different children have

different logit indices. For DGPs 2 and 3, there is additional variability stemming from family

characteristics.

We run 2,500 Monte Carlo replications. In each replication we estimate a basic LPM, and LPM

reweighted for the target population. We also estimate our two-step logit model and a logit model

with Mundlak controls. For each of these we estimate both an unweighted version and a version

that is reweighted for the target population. We consider the same four target populations, and

present the results in Table C.1. The first panel shows results for DGP 1, with constant (in logit

units) treatment effects. For this DGP, all models perform well for target groups of switchers,

with biases that are small and usually not distinguishable from zero. When we target siblings, all

children, or Head Start participants, the LPM model exhibits a detectable bias, which is slightly

reduced by reweighting. The proposed 2-step logit model and Mundlak model do better, with small

bias. However when they are reweighted with an aim to be representative of the target population,

they too have a detectable bias.

In DGP 2 we now have treatment effects that vary with family size. Here all of the basic models

perform poorly, both LPM and our two logit variations. Reweighting helps dramatically here, for

all three models.

For DGP 3 all models give biased results when we target all children or all siblings. The three

reweighted models perform roughly equally well. Each of the specifications does well for estimating

treatment effects for switchers, Head Start participants, and Head Start siblings, with small biases.

In results not reported, we also explored a naive logit fixed effects specification for target groups

of RHS switchers and sbilings. For these groups, this method performs similarly to the LPM, 2-step

Logit, and Mundlak logit discussed above.

C.5 Discussion of Specification Choices

In our literature sample, use of OLS/LPM methods is ubiquitous. Based on the results of this

section, we recommend continued use of this method. For researchers who want to pursue a logit

type specification, we believe that either the two-step logit model (based off of a conditional logit
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estimation first step) or a logit with Mundlak controls can perform well.
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Table C.1: Monte Carlo Experiments: Bias of Linear and Nonlinear Models Relative to Target ATE,

and Effectiveness of Reweighting

LPM Logit Logit Reweight

True ATE FE Baseline Reweight 2-Step Mundlak 2-Step Mundlak

1. Constant TE
Switchers 86.4 -0.5 -0.4 -0.3 -1.6∗ -1.5 -1.8∗

Siblings 78.8 7.0∗ 5.6∗ 2.0∗ 0.6 5.5∗ 4.3∗

All 78.8 7.1∗ 5.8∗ 2.0∗ 0.7 5.7∗ 4.3∗

HS Participants 88.1 -2.3∗ -2.1∗ 1.0 -0.2 -2.8∗ -1.0

2. Large Family TE

Switchers 79.6 -10.2∗ 0.0 -11.5∗ -10.8∗ -2.5∗ -0.9
Siblings 44.5 24.9∗ 2.6∗ -9.1∗ 20.0∗ 1.1 2.0∗

All 36.1 33.2∗ 1.6 0.5 28.3∗ 0.5 1.1
HS Participants 40.1 29.2∗ -0.6 40.7∗ 30.9∗ -1.7∗ -0.1

3. TE linear in Xf

Switchers 102.2 0.1 0.8 -1.5 -1.3 -2.3∗ -1.1
Siblings 84.3 18.1∗ 9.3∗ 3.8∗ 10.4∗ 7.3∗ 7.9∗

All 84.2 18.2∗ 9.5∗ 9.6∗ 10.5∗ 7.6∗ 8.0∗

HS Participants 101.9 0.4 -0.2 2.6∗ 2.5∗ -2.8∗ 0.8

Notes: This table shows the results from 2,500 Monte Carlo simulations for three different DGPs of some college attainment,
presented separately in each panel of the table, and four different target populations, shown in each row of the panel. The
true DGP is a logit model, and is discussed in Section C.4. The first panel shows results where Head Start has a constant
treatment effect (TE) (on the logit index) for all individuals; the second shows results where Head Start (HS) has no effect on
individuals from small families (3 or fewer children) and a large effect for families with many children (4 or more children);
and the third panel shows results where effects are linear in Xf . Column 1, “True Beta,” presents the true average increase
in the probability of completing some college for participants in Head Start in the sample, which is a function of the DGP
and sample composition. The remaining columns present the bias of various estimation strategies, defined as the difference
between the estimated effects of Head Start and the true beta. Columns 2 and 3, LPM and LPM reweight, are defined as in
Table 4. Columns 4 to 7 show the results from using the two step random effects estimator and Mundlak logit without and
with propensity score weights, respectively. Reweighted estimates obtained using in-regression weighting, which accounts for
the representativeness of switchers and the conditional variance of Head Start within families. All betas are multiplied by
1,000. * p < .01.
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